首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the ultrastructure and central targets in the cochlear nucleus of axonal swellings of type II primary afferent neurons. Type II axons comprise only 5-10% of the axons of the auditory nerve of mammals, but they alone provide the afferent innervation of the outer hair cells. In this study, type II axons were labeled with horseradish peroxidase, and serial-section electron microscopy was used to examine their swellings in: (1) the granule-cell lamina at its boundary with posteroventral cochlear nucleus, (2) the rostral anteroventral cochlear nucleus, and (3) the auditory nerve root. Only some (18%) of the type II terminal and en-passant swellings formed synapses. The synapses were asymmetric and contained clear round synaptic vesicles, suggesting that they are excitatory. Type II synapses were compared to those from type I fibers providing the afferent innervation of the inner hair cells. Type II synapses tended to have slightly smaller and fewer synaptic vesicles, had a greater proportion of the membrane apposition accompanied by a postsynaptic density, and often had densities that were discontinuous or 'perforated'. In all cochlear nucleus regions examined, the postsynaptic targets of type II synapses had characteristics of dendrites; in most cases these dendrites could not be traced to their cell bodies of origin. Some evidence suggests, however, that targets may include granule cells, spherical cells, and other cells in the nerve root. These results suggest afferent information from outer hair cells reaches diverse regions and targets within the cochlear nucleus.  相似文献   

2.
Reconstructions of the efferent innervation of the hamster (Mesocricetus auratus) cochlea were done during postnatal development. Efferent neurons were labeled via injections of biocytin and horseradish peroxidase into the crossed olivocochlear (OC) bundles using an in vitro brainstem technique. Such injections retrogradely labeled cell bodies in ventral periolivary regions of the superior olive consistent with their being medial OC neurons. Anterogradely labeled axons were traced to the cochlea, where they terminated on or below inner hair cells (IHCs) prior to postnatal day 5 (P5). After P5, labeled axons terminated on IHCs and outer hair cells (OHCs) and after P10, the majority of labeled axons terminated on the OHCs. In the electron microscope, small labeled terminals containing densely packed synaptic vesicles were found both adjacent to IHCs (axosomatic) as well as apposed to afferent and efferent fibers below IHCs prior to P5. By P10, large labeled terminals were axosomatic to OHCs and no longer found on IHCs. Consistent with previous reports, these data suggest that medial OC axons form part of an early primary innervation on and below IHCs before terminating on OHCs. This raises the possibility that OC neurons demonstrate a period of waiting below an intermediate target similar to that described in the development of thalamocortical projections.  相似文献   

3.
Neurons in the superficial dorsal horn of the spinal cord are important for conveying sensory information from the periphery to the central nervous system. Some synapses between primary afferent fibres and spinal dorsal horn neurons may be inefficient or silent. Ineffective sensory transmission could result from a small postsynaptic current that fails to depolarize the cell to threshold for an action potential or from a cell with a normal postsynaptic current but an increased threshold for action potentials. Here we show that some cells in the superficial dorsal horn of the lumbar spinal cord have silent synapses: they do not respond unless the holding potential is moved from -70 mV to +40 mV. Serotonin (5-hydroxytryptamine, 5-HT), an important neurotransmitter of the raphe-spinal projecting pathway, transforms silent glutamatergic synapses into functional ones. Therefore, transformation of silent glutamatergic synapses may serve as a cellular mechanism for central plasticity in the spinal cord.  相似文献   

4.
The presence of secondary sensory cells in the Octopus gravity receptor system has been demonstrated. In serial thin sections of the receptor cells (hair cells) no axons were found leaving the cells. Instead, synapses were observed with synaptic vesicles lying inside the receptor cells. Both data clearly indicate that the receptor hair cells represent secondary sensory cells. In addition, efferent contacts to the receptor cells could be confirmed.  相似文献   

5.
Combined ultrastructural and immunocytochemical studies reveal that in the adolescent 12- to 17-day-old mouse the afferent tunnel crossing fibers that innervate outer hair cells receive synaptic contacts from three distinct sources: the GABAergic fibers (GABA = gamma-aminobutyric acid) of the lateral olivocochlear bundle, the non-GABAergic efferent tunnel crossing fibers, and the inner hair cells themselves. The GABAergic fibers give off collaterals that synapse with the afferent tunnel fibers as they cross the inner hair cell region. These collaterals also form synapses with afferent radial dendrites that are synaptically engaged with the inner hair cells. Vesiculated varicosities of non-GABAergic efferent tunnel fibers also synapse upon the outer spiral afferents. Most of this synaptic activity occurs within the inner pillar bundle. Distinctive for this region are synaptic aggregations in which several neuronal elements and inner hair cells are sequentially interconnected. Finally, most unexpected were the afferent ribbon synapses that inner hair cells-formed en passant on the shafts of the apparent afferent tunnel fibers. The findings indicate that: (1) the afferent tunnel (i.e., outer spiral) fibers may be postsynaptic to both the inner and the outer hair cells; (2) the non-GABAergic efferent and the afferent tunnel fibers form extensive synaptic connections before exiting the inner pillar bundle; (3) the GABAergic component of the lateral olivocochlear system modulates synaptically both radial and outer spiral afferents.  相似文献   

6.
We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell.  相似文献   

7.
The chinchilla crista ampullaris was studied in 10 samples, each containing 32 consecutive ultrathin sections of the entire neuroepithelium. Dissector methods were used to estimate the incidence of various synaptic features, and results were confirmed in completely reconstructed hair cells. There are large regional variations in cellular and synaptic architecture. Type I and type II hair cells are shorter, broader, and less densely packed in the central zone than in the intermediate and peripheral zones. Complex calyx endings are most common centrally. On average, there are 15-20 ribbon synapses and 25-30 calyceal invaginations in each type I hair cell. Synapses and invaginations are most numerous centrally. Central type II hair cells receive considerably fewer afferent boutons than do peripheral type II hair cells, but have similar numbers of ribbon synapses. The numbers are similar because central type II hair cells make more synapses with the outer faces of calyx endings and with individual afferent boutons. Most afferent boutons get one ribbon synapse. Boutons without ribbon synapses were only found peripherally, and boutons getting multiple synapses were most frequent centrally. Throughout the neuroepithelium, there is an average of three to four efferent boutons on each type II hair cell and calyx ending. Reciprocal synapses are rare. Most synaptic ribbons in type I hair cells are spherules; those in type II hair cells can be spherical or elongated and are particularly heterogeneous centrally. Consistent with the proposal that the crista is concentrically organized, the intermediate and peripheral zones are each similar in their cellular and synaptic architecture near the base and near the planum. An especially differentiated subzone may exist in the middle of the central zone.  相似文献   

8.
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central inputs are adaptive and serve to minimize the effects of predictable sensory inputs. Understanding the interaction between peripheral and central inputs to the mormyrid ELL requires knowledge of its functional circuitry, and this paper examines this circuitry in the in vitro slice preparation and describes the axonal and dendritic morphology of major ELL cell types based on intracellular labeling with biocytin. The cells described include medium ganglion cells, large ganglion cells, large fusiform cells, thick-smooth dendrite cells, small fusiform cells, granule cells, and primary afferent fibers. The medium ganglion cells are Purkinje-like interneurons that terminate on the two types of efferent cells, i.e., large ganglion and large fusiform cells, as well as on each other. These medium ganglion cells fall into two morphologically distinct types based on the distributions of basal dendrites and axons. These distributions suggest hypotheses about the basic circuit of the ELL that have important functional consequences, such as enhancement of contrast between "on" elements that are excited by increased afferent activity and "off" elements that are inhibited.  相似文献   

9.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

10.
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.  相似文献   

11.
Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to ischemia. The result from the present study suggests that late depolarizing postsynaptic potential and small excitatory postsynaptic potential neurons may be irreversibly injured while non-late depolarizing postsynaptic potential neurons may be those that survive the ischemic insult. Alterations of synaptic transmission may be associated with the pathogenesis of postischemic neuronal injury.  相似文献   

12.
Responses of anterior piriform cortex layer II/III neurons to both odors and electrical stimulation of the lateral olfactory tract (LOT) were measured with intracellular recordings in urethan-anesthetized, freely breathing rats. Odor-evoked, respiration-entrained postsynaptic potentials (PSPs) rapidly habituated during a 50-s odor stimulus, then spontaneously recovered within 2 min of odor termination. Associated with the decrease in odor-evoked PSP amplitude was a decrease in the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of the LOT. The decrement in LOT-evoked EPSPs recovered with a time course similar to the odor response recovery. These results demonstrate that odor habituation is associated with a decrease in afferent synaptic efficacy in the anterior piriform cortex.  相似文献   

13.
Whole-cell patch-clamp technique of freshly isolated rat spinal dorsal horn (DH) neurons, intracellular recording from DH neurons in a slice preparation, and high performance liquid chromatography with fluorimetric detection of release of endogenous glutamate and aspartate from spinal cord slice following activation of primary afferent fibers were employed to investigate interactions between excitatory amino acids (EAA) and tachykinins [substance P (SP) and neurokinin A (NKA)]. Potentiation of N-methyl-D-aspartate (NMDA)-, quisqualate (QA)- and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, but not kainate-induced currents by SP and NKA was found. Spantide II, a claimed novel nonselective tachykinin antagonist, effectively blocked the SP (2 nM)-induced potentiation of the responses of DH neurons to NMDA. In the presence of glycine (0.1 microM), the SP-evoked increase of the NMDA-induced current was prevented. However, 7-chlorokynurenic acid (2 microM), a competitive antagonist at the glycine allosteric site of the NMDA receptor, led to the reestablishment of the SP effect. Brief high frequency electrical stimulation of primary afferent fibers produced a long-lasting potentiation of presumed monosynaptic and polysynaptic excitatory postsynaptic potentials and sustained enhanced release of endogenous glutamate (218.3 +/- 66.1%) and aspartate (286.3 +/- 58.0%). Possible functional implications of the observed phenomena are discussed in relation to transmission and integration of sensory information, including pain.  相似文献   

14.
Both sound exposure and gentamicin treatment cause damage to sensory hair cells in the peripheral chick auditory organ, the basilar papilla. This induces a regeneration response which replaces hair cells and restores auditory function. Since functional recovery requires the re-establishment of connections between regenerated hair cells and the central nervous system, we have investigated the effects of sound damage and gentamicin treatment on the neuronal elements within the cochlea. Whole-mount preparations of basilar papillae were labeled with phalloidin to label the actin cytoskeleton and antibodies to neurofilaments, choline acetyltransferase, and synapsin to label neurons; and examined by confocal laser scanning microscopy. When chicks are treated with gentamicin or exposed to acoustic overstimulation, the transverse nerve fibers show no changes from normal cochleae assayed in parallel. Efferent nerve terminals, however, disappear from areas depleted of hair cells following acoustic trauma. In contrast, efferent nerve endings are still present in the areas of hair cell loss following gentamicin treatment, although their morphological appearance is greatly altered. These differences in the response of efferent nerve terminals to sound exposure versus gentamicin treatment may account, at least in part, for the discrepancies reported in the time of recovery of auditory function.  相似文献   

15.
Previous research has demonstrated that only the two neurotrophins and their cognate receptors are necessary for the support of the inner ear innervation. However, detailed analyses of patterns of innervation in various combinations of neurotrophin receptor mutants are lacking. We provide here such an analysis of the distribution of afferent and efferent fibers to the ear in various combinations of neurotrophin receptor mutants using the lipophilic tracer Dil. In the vestibular system, trkC+/- heterozygosity aggravates the trkB-/- mutation effect and causes almost complete loss of vestibular neurons. In the cochlea innervation, various mutations are each characterized by specific topological absence of spiral neurons in Rosenthal's canal of the cochlea. trkC-/- mutation alone or in combination with trkB+/- heterozygosity causes absence of all basal turn spiral neurons and afferent fibers extend from the middle turn to the basal turn along inner hair cells with little or no contribution to outer hair cells. Both types of basal turn spiral neurons appear to develop and project via radial fibers to inner and, more sparingly, outer hair cells. Simple trkB-/- mutations show a reduction of fibers to outer hair cells in the apex and, less obvious, in the basal turn. Basal turn spiral neurons may be the only neurons present at birth in the cochlea of a trkB-/- mutant mouse combined with trkC+/- heterozygosity. In addition, the trkB-/- mutation combined with trkC+/- heterozygosity has a patchy and variable loss of middle turn spiral neurons in mice of different litters. Comparisons of patterns of innervation of afferent and efferent fibers show a striking similarity of absence of fibers to topologically corresponding areas. For example, in trkC-/- mutants afferents reach the basal turn, spiraling along the cochlea, rather than through radial fibers and efferent fibers follow the same pathway rather than emanating from intraganglionic spiral fibers. The data presented suggest that there are regional specific effects with some bias towards a specific spiral ganglion type: trkC is essential for support of basal turn spiral neurons whereas trkB appears to be more important for middle and apical turn spiral neurons.  相似文献   

16.
We characterized a subset of leech sensory afferents, the photoreceptors, in terms of their molecular composition, anatomical distribution, and candidate postsynaptic partners. For reagents, we used an antiserum generated against purified LL35, a 35 kD leech lactose-binding protein (galectin); monoclonal antibody (mAb) Lan3-2, which is specific for a mannose-containing epitope common to the full set of sensory afferents; and dye injections. Photoreceptors differ from other types of sensory afferents by their abundant expression of galectin. However, photoreceptors share in common with other sensory modalities the mannose-containing epitope recognized by mAb Lan3-2. Photoreceptors from a given segment project their axons directly into the CNS ganglion innervating the same segment. They assemble in a target region, the optic neuropil, which is separate from the target regions of other sensory modalities. They also extend their axons as an optic tract into the connective to innervate optic neuropils of other CNS ganglia, thereby providing extensive intersegmental innervation for the 33 CNS ganglia comprising the leech nerve cord. Because of its intimate contact with the optic neuropil, a central neuron, the AP effector cell, is a strong candidate second order visual neuron. In confocal images, the AP cell projects its primary axon for about 100 microns alongside the optic neuropil. In electron micrographs, spines emanating from the axon of the AP cell make contact with vesicle laden nerve terminals of photoreceptors. Leech photoreceptors and their second order visual neurons represent a simple visual system for studying the mechanisms of axonal targeting.  相似文献   

17.
Second-order vestibular neurons (secondary VNs) were identified in the in vitro frog brain by their monosynaptic excitation following electrical stimulation of the ipsilateral VIIIth nerve. Ipsilateral disynaptic inhibitory postsynaptic potentials were revealed by bath application of the glycine antagonist strychnine or of the gamma-aminobutyric acid-A (GABA(A)) antagonist bicuculline. Ipsilateral disynaptic excitatory postsynaptic potentials (EPSPs) were analyzed as well. The functional organization of convergent monosynaptic and disynaptic excitatory and inhibitory inputs onto secondary VNs was studied by separate electrical stimulation of individual semicircular canal nerves on the ipsilateral side. Most secondary VNs (88%) received a monosynaptic EPSP exclusively from one of the three semicircular canal nerves; fewer secondary VNs (10%) were monosynaptically excited from two semicircular canal nerves; and even fewer secondary VNs (2%) were monosynaptically excited from each of the three semicircular canal nerves. Disynaptic EPSPs were present in the majority of secondary VNs (68%) and originated from the same (homonymous) semicircular canal nerve that activated a monosynaptic EPSP in a given neuron (22%), from one or both of the other two (heteronymous) canal nerves (18%), or from all three canal nerves (28%). Homonymous activation of disynaptic EPSPs prevailed (74%) among those secondary VNs that exhibited disynaptic EPSPs. Disynaptic inhibitory postsynaptic potentials (IPSPs) were mediated in 90% of the tested secondary VNs by glycine, in 76% by GABA, and in 62% by GABA as well as by glycine. These IPSPs were activated almost exclusively from the same semicircular canal nerve that evoked the monosynaptic EPSP in a given secondary VN. Our results demonstrate a canal-specific, modular organization of vestibular nerve afferent fiber inputs onto secondary VNs that consists of a monosynaptic excitation from one semicircular canal nerve followed by disynaptic excitatory and inhibitory inputs originating from the homonymous canal nerve. Excitatory and inhibitory second-order (secondary) vestibular interneurons are envisaged to form side loops that mediate spatially similar but dynamically different signals to secondary vestibular projection neurons. These feedforward side loops are suited to adjust the dynamic response properties of secondary vestibular projection neurons by facilitating or disfacilitating phasic and tonic input components.  相似文献   

18.
Recent advances in the pharmacology of the vestibulo-ocular reflex have had a major impact on our understanding of the vestibular system, the sensory system primarily concerned with the stabilization of gaze and posture during head movement. Increasing evidence suggests that afferent transmission from the receptor hair cells in the vestibular labyrinth to the vestibular nerve probably involves glutamate acting on a number of excitatory amino acid receptor subtypes. Furthermore, hair-cell sensitivity appears to be regulated by cholinergic, GABA-mediated and, possibly, peptide-mediated efferent feedback from the CNS. Likewise, it seems clear that an excitatory amino acid, probably glutamate, is the major transmitter used by the vestibular nerve in its synapses with neurones of the brainstem vestibular nucleus. In this review, Paul Smith and Cynthia Darlington discuss the large number of receptor subtypes that have been identified in the vestibular nucleus, including receptors for several peptides that may have a role in co-transmission.  相似文献   

19.
1. Primary afferent depolarization (PAD) can be evoked by sensory volleys, supraspinal commands, or the activity of spinal locomotor networks (locomotor-related PAD). In this study we investigated the effect of locomotor-related PAD and of sensory-evoked PAD on the monosynaptic transmission between the group IA muscle afferents and motoneurons in the lumbosacral spinal cord. 2. Six pairs of group IA afferents and motoneurons [4 tibialis anterior (TA), 1 medial gastrocnemius (MG), 1 lateral gastrocnemius-soleus (LGS)] were successfully recorded intracellularly during spontaneous fictive locomotion in the decerebrate cat. The membrane potentials of TA axons and motoneurons were maximally depolarized during the flexor phase of the locomotor cycle. In MG and LGS pairs, the maximum depolarization in IA axons occurred during the flexor phase and, in motoneurons, during the extensor phase. There were no antidromic discharges in the recorded axons. The effects of locomotor-related PAD on IA transmission were evaluated by comparing the unitary excitatory postsynaptic potentials (EPSPs) in the motoneuron evoked by the spontaneous orthodromic firing of the group IA axon during the flexor and extensor phases, respectively. In TA pairs, the maximum amplitude of unitary EPSPs occurred during the flexor phase when the motoneuron and the axon were maximally depolarized. In the MG and LGS pairs, the maximal amplitude of unitary EPSPs occurred during the extensor phase when the motoneuron was maximally depolarized and when the axon was the least depolarized. Overall, the amplitude of unitary EPSPs was clearly modulated during the fictive step cycle and always reached a maximum during the depolarized phase of the motoneuron, whether the group IA axon was maximally depolarized or not during that phase. 3. The effect of sensory-evoked PAD on synaptic transmission was also studied in nonlocomoting preparations. One TA pair was successfully recorded and PADs were evoked by the stimulation of a peripheral nerve. The amplitude of unitary EPSPs in the motoneuron was greatly depressed during the PADs. This result is a direct demonstration of the presynaptic inhibition associated with the sensory-evoked PAD in the monosynaptic reflex pathway of the cat. 4. We conclude from these results that the locomotor-related PAD did not contribute significantly to the modulation of transmission in the monosynaptic reflex pathway of the cat during fictive locomotion. On the other hand, the results confirmed that PAD evoked by sensory input decreases group IA afferent transmission efficiently most probably by presynaptic inhibition. The results suggest therefore that, during real locomotion, sensory feedback induced by the moving limbs or perturbations will evoke an important presynaptic inhibition of the release from group IA primary afferent terminals.  相似文献   

20.
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with antibody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3-2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable of sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferents. In the sensillum studied here, we found examples of sensory neurons extending axons into one of all the available fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号