首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of different muffling environments on the structure and dielectric losses of Ba(Zn1/3Nb2/3)O3 (BZN) microwave ceramics was investigated. The microwave dielectric losses of stoichiometric BZN pellets heated in ZnO-rich environments were severely degraded (e.g. Q × f ∼15 000 in ZnO powder) compared with samples muffled in their own powder ( Q × f ∼80 000). Structure analyses and gravimetric measurements confirmed that the ceramics muffled in ZnO powder or vapor absorb excess ZnO to form non-stoichiometric solid solutions with reduced cation order and Q . By using starting compositions in the (1− x )BZN−( x )BaNb4/5O3 binary ( x =0.04), the stoichiometry can be tailored to ensure that after the uptake of ZnO, the ceramics remain well ordered and are located in a high Q region of the system. For example, ZnO-vapor-protected (0.96)BZN−(0.04)BaNb4/5O3 reached a very high Q × f (∼1 05 000) after sintering at 1400°C for 5 h.  相似文献   

2.
High Q ceramics of Ba3W2O9 (BW)-substituted Ba(Zn1/3Nb2/3) O3 (BZN) were prepared with a zero τf through the partial substitution of Zn by Ni and Co. The small concentrations of B-site vacancies introduced by the substitution of BW accelerated the kinetics and stability of the cation ordering and lowered the sintering temperature. Dense, zero τf, ordered solid solutions such as 0.99Ba(Zn0.3Co0.7)1/3Nb2/3O3–0.01BW with ɛr=34.4 and Q × f =82 000 at ∼8 GHz could be obtained after sintering at 1380°C for 5 h and annealing at 1300°C for 24 h. Partially ordered ceramics in the Zn/Co and Zn/Ni solid solutions show a large gradient in the ordering throughout the pellets, which produces a resonant frequency dependence of their Q × f value. The ordering gradient is associated with the increased constraints on the growth of the 1:2 ordered structure within the interior of larger and thicker pellets and can be minimized by extended annealing.  相似文献   

3.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

4.
Ca(Mg1/3Nb2/3)O3 (CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) ceramic disks were stacked with three stacking schemes, designated as CMN/BZN, CMN/BZN/CMN, and BZN/CMN/BZN, to yield layered dielectric resonators, and the microwave dielectric characteristics were evaluated with the TE01δ mode. Both experiments and finite element analysis showed that the microwave dielectric characteristics of the layered resonator were determined not only by the volume fraction of BZN but also by the stacking scheme. For each stacking scheme, a good combination of microwave dielectric characteristics with an effective dielectric constant of 34.33–34.52, a Q × f value of 58 800–62 080 GHz, and a near-zero temperature coefficient of resonant frequency could be achieved by adjusting the volume fraction of BZN. The effects of the stacking scheme on the microwave dielectric characteristics of the temperature-stable layered resonator were discussed by combining finite element analysis and dielectric composite models.  相似文献   

5.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

6.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

7.
A group of new y M-phase/(1− y ) Li2+ x Ti1−4 x Nb3 x O3 composite ceramics with adjustable permittivities for low-temperature co-fired ceramic applications was initially investigated in the study. The 0.5 M-phase/0.5 Li2+ x Ti1−4 x Nb3 x O3 ( x =0.01, 0.02, 0.04, 0.06, 0.081) composite ceramics were first investigated to find the appropriate "Li2TiO3ss" composition ( x value). The best dielectric properties of ɛr=40.1, Q × f values up to 9318 GHz, τf=25 ppm/°C, were obtained for the ceramics composites at x =0.02. Based on the good dielectric properties, the suitable "Li2TiO3ss" composition with x =0.02 was mixed with the Li1.0Nb0.6Ti0.5O3 powder as the ratio of y "M-phase"/(1− y ) "Li2TiO3ss" ( y =0.2, 0.4, 0.5, 0.6, 0.8). By adjusting the y values, the group of composite ceramics could exhibit largely are adjustable permittivities varying from ∼20 to ∼60, while Q × f and τf values relatively good. Nevertheless, in this study, because there are interactions between the M-phase and Li2TiO3ss during sintering process, their microwave dielectric properties could not be predicted precisely by the empirical model.  相似文献   

8.
Single-phase polycrystalline microwave dielectric ceramics Ba6Ti1− x Sn x Nb4O18, with x changing from 0 to 1, were synthesized by the solid-state reaction method. All the solid solutions fitted well with A6B5O18 cation-deficient hexagonal perovskite structure. The substitution of Sn for Ti effectively enhanced the quality factor and controlled τf. With increasing Sn content, the dielectric constant decreased from ∼47 to ∼32, and the Q × f value increased significantly from 11 530 to 28 496 GHz, with τf varying from 64 to 0 ppm/°C. A zero τf was realized when Sn was fully replaced by Ti with the composition Ba6SnNb4O18.  相似文献   

9.
A possibility to produce microwave (MW) dielectric materials by liquid-phase sintering of fine particles was investigated. Zn3Nb2O8 powders with a grain size 50–300 nm were obtained by the thermal decomposition of freeze-dried Zn–Nb hydroxides or frozen oxalate solutions. The crystallization of Zn3Nb2O8 from amorphous decomposition products was often accompanied by the simultaneous formation of ZnNb2O6. Maximum sintering activity was observed for single-phase crystalline Zn3Nb2O8 powders obtained at the lowest temperature. The sintering of as-obtained powders with CuO–V2O5 sintering aids results in producing MW dielectric ceramics with a density 93%–97% of the theoretical, and a Q × f product up to 36 000 GHz at sintering temperature ( T s)≥680°C. The high level of MW dielectric properties of ceramics was ensured by intensive grain growth during the densification and the thermal processing of ceramics.  相似文献   

10.
The high-energy ball-milling (HEM) method was used to synthesize the compositions of BiNbO4, Bi5Nb3O15, and Bi3NbO7 in a Bi2O3–Nb2O5 binary system. Reagent Bi2O3 and Nb2O5 were chosen as the starting materials. The X-ray diffraction patterns of the three compositions milled for different times were studied. Only the cubic Bi3NbO7 phase, Nb2O5, and amorphous matters were observed in powders after being milled for 10 h. After heating at proper temperatures the amorphous matters disappeared and the proleptic phases of BiNbO4 and Bi5Nb3O15 could be obtained. The Scherrer formula was used to calculate the crystal size and the results of nanopowders are between 10 and 20 nm. The scanning electron microscopy photos of Bi3NbO7 powders showed drastic aggregation, and the particle size was about 100 nm. The dielectric properties of ceramics sintered from the nanopowders prepared by HEM at 100–1 MHz and the microwave region were measured. Bi3NbO7 ceramics showed a good microwave permittivity ɛr of about 80 and a Q × f of about 300 at 5 GHz. The triclinic phase of BiNbO4 ceramics reached its best properties with ɛr=24 and Q × f =14 000 GHz at about 8 GHz.  相似文献   

11.
Ca(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE01δ mode. With increasing the Ba(Zn1/3Nb2/3)O3 thickness fraction, the resonant frequency ( f 0) decreased, while the effective dielectric constant (ɛ r ,eff) and temperature coefficient of resonant frequency (τ f ) increased. Good microwave dielectric characteristics were attained for the samples with the Ba(Zn1/3Nb2/3)O3 thickness fraction of 0.5: ɛ r ,eff=34.33, Q × f =57 930 GHz and τ f =2.6 ppm/°C. Finite-element method was used to predict the microwave dielectric characteristics of the layered resonators and good agreements were attained between the experimental results and predicted ones. Also, both experiment and finite-element analysis indicated that the effects of the adhesive on f 0, ɛ r ,eff, and τ f were slight, while that on Q × f value was significant.  相似文献   

12.
Effects of additives on the piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics in a perovskite-type structure are described. The tetragonality of Pb(Mg1/3Nb2/3)0.375-Ti0.375Zr0.25O3 ceramics increased with the addition of NiO, Cr2O3, or Fe2O3 but decreased with the addition of MnO2 or CoO. The dielectric and piezoelectric properties of the base composition were improved markedly through selection of additives in proper amounts. Addition of NiO yielded a high dielectric constant and planar coupling coefficient for compositions at the morphotropic transition boundary. High mechanical Q -factors and low electrical dissipation factors were obtained by addition of MnO2. Addition of both NiO and MnO2 produced a mechanical Q -factor of 2051 and a planar coupling coefficient of 0.553. The resonant frequency of Pb(Mg1/2Nb2/3)0.4375Ti0.4375 zr0.125O3 containing MnO2 had very low temperature and time dependence. The microstructure indicated that ceramics with a high mechanical Q -factor had a fine, uniform grain structure. Addition of Cr2O3 retarded grain growth and addition of MnO2, NiO, CoO, or Fe2O3 promoted grain growth in the ternary system.  相似文献   

13.
The phase equilibrium diagram of the system ThO2-Nb2O was redetermined near the composition Th2Nb2O9. This phase was found to melt incongruenlly at 1362°C, with a eutectic temperature at ∼1350°C. The peritectic and eutectic compositions must occur between 60 and ∼64 mol % ThO2. From single crystal and powder X-ray diffraction data, Th2 Nb2O9 was found to have a primitive monoclinic unit cell with a = 6.711(1), b = 25.254(5), c=7.757(1)×10−1nm, β=90.46 (1)°.  相似文献   

14.
The dielectric properties of dense ceramics of the "twinned" 8H-hexagonal perovskite Ba8Nb4Ti3O24 are reported. Single-phase powders were obtained from the mixed-oxide route at 1325°C and ceramics (>92% of the theoretical X-ray density) by sintering in air or flowing O2 at 1400°–1450°C. The ceramics are dc insulators with a band gap >3.4 eV that resonate at microwave frequencies with relative permittivity, ɛr∼44–48, quality factor, Q × f r∼21 000–23 500 GHz (at f r∼5.5 GHz) and temperature coefficient of resonant frequency, TC f,∼+115 ppm/K.  相似文献   

15.
(1− x )ZnNb2O6· x TiO2 ceramics were prepared using both anatase and rutile forms of TiO2. At a composition of x = 0.58, a mixture region of ixiolite (ZnTiNb2O8) and rutile was observed and the temperature coefficient of resonant frequency (τf) was ∼0 ppm/°C. We found that although ɛr and τf were comparable, the quality factor ( Q × f , Q ≈ 1/ tan δ, f = resonant frequency) of 0.42ZnNb2O6·0.58TiO2 prepared from anatase and rutile was 6000 and 29 000, respectively. The origin of the difference in Q × f of both samples was investigated by measuring electrical conductivity and by analysis of the anatase–rutile phase transition. The anatase-derived sample had higher conductivity, which was related to the reduction of Ti4+. It is suggested that the increase of dielectric loss originates from an increase in Ti3+ and oxygen vacancies due to an anatase–rutile phase transition.  相似文献   

16.
The effects of calcium substitution on the structural and microwave dielectric characteristics of [(Pb1− x Ca x )1/2La1/2](Mg1/2Nb1/2)O3 ceramics (with x = 0.01–0.5) were investigated. All the materials were observed to have an ordered A(B1/2'B1/2")O3-type perovskite structure; however, the space group of the structure changed from Fm 3 m to Pa 3 as the calcium content increased to x = 0.1, and then from Pa 3 to R 3¯ at the x = 0.5 composition. During the structural evolution, the lattice parameter of the perovskite cell decreased linearly, and the dielectric constant ( k ) also decreased, from k = 80 to k = 38. However, the product of the quality factor and the resonant frequency ( Q × f ) increased from 50 000 GHz to 90 000 GHz as the calcium content increased. Also, the temperature coefficient of resonant frequency (τƒ) gradually changed from 120 ppm/°C to −40 ppm/°C as the calcium content increased. At the x = 0.3 composition, a combination of properties— k ∼ 50, Q × f ∼ 86 000 GHz, and τƒ∼ 0 ppm/°C—can be obtained.  相似文献   

17.
The effects of LiF and ZnO–B2O3–SiO2 (ZBS) glass combined additives on phase composition, microstructures, and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3−δ (CLNT) ceramics were investigated. The LiF and ZBS glass combined additives lowered the sintering temperature of CLNT ceramics effectively from 1150° to 880°C. The main diffraction peaks of all the specimens split due to the coexistence of the non-stoichiometric phase (A) and stoichiometric phase (B), which all possess CaTiO3-type perovskite structures. The transformation from A into B became accelerated with the increase of LiF or ZBS content. ZBS glass restrained the volatilization of lithium salt, which greatly affected the microstructures and microwave dielectric properties. CLNT ceramics with 2 wt% LiF and 3 wt% ZBS sintered at 900°C for 2 h show excellent dielectric properties: ɛr=34.3, Q × f =17 400 GHz, and τf=−4.6 ppm/°C. It is compatible with Ag electrodes, which makes it a promising ceramic for low-temperature cofired ceramics technology application.  相似文献   

18.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

19.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

20.
Twenty hours of mechanical activation of mixed oxides at room temperature led to the formation of Pb(Mg1/3Nb2/3)O3 (PMN) in excess PbO. The crystallinity of the activation-derived perovskite PMN phase was further established when the activated PMN–PbO phase mixture was subjected to calcination at 800°C. Pyrochlores, such as Pb3Nb4O13 and Pb2Nb2O7, were not observed as transitional phases on mechanical activation and subsequent calcination, although 50% excess PbO was deliberately added. The perovskite PMN phase was recovered by washing off excess PbO using acetic acid solution at room temperature. It was sintered to a relative density of 98.9% of theoretical at 1200°C for 1 h and the sintered PMN exhibited a dielectric constant of ∼14 000 at 100 Hz and a Curie temperature of −11°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号