首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li JJ  Zhu KD 《Nanotechnology》2011,22(5):055202
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.  相似文献   

2.
Ratchford D  Shafiei F  Kim S  Gray SK  Li X 《Nano letters》2011,11(3):1049-1054
Using atomic force microscopy nanomanipulation, we position a single Au nanoparticle near a CdSe/ZnS quantum dot to construct a hybrid nanostructure with variable geometry. The coupling between the two particles is varied in a systematic and reversible manner. The photoluminescence lifetime and blinking of the same quantum dot are measured before and after assembly of the structure. In some hybrid structures, the total lifetime is reduced from about 30 ns to well below 1 ns. This dramatic change in lifetime is accompanied by the disappearance of blinking as the nonradiative energy transfer from the CdSe/ZnS quantum dot to the Au nanoparticle becomes the dominant decay channel. Both total lifetime and photoluminescence intensity changes are well described by simple analytical calculations.  相似文献   

3.
Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices   总被引:1,自引:0,他引:1  
We fabricated planar PbS quantum dot devices with ohmic and Schottky type electrodes and characterized them using scanning photocurrent and photovoltage microscopies. The microscopy techniques used in this investigation allow for interrogation of the lateral depletion width and related photovoltaic properties in the planar Schottky type contacts. Titanium/QD contacts exhibited depletion widths that varied over a wide range as a function of bias voltage, while the gold/QD contacts showed ohmic behavior over the same voltage range.  相似文献   

4.
Monat C  Alloing B  Zinoni C  Li LH  Fiore A 《Nano letters》2006,6(7):1464-1467
A novel light-emitting-diode structure is demonstrated, which relies on nanoscale current injection through an oxide aperture to achieve selective excitation of single InAs/GaAs quantum dots. Low-temperature electroluminescence spectra evidence discrete narrow lines around 1300 nm (line width approximately 75 microeV) at ultralow currents, which are assigned to the emission from single excitons and multiexcitons. This approach, which enables the fabrication of efficient nanoscale active devices at 1300 nm, can provide single-photon-emitting diodes for fiber-based quantum cryptography.  相似文献   

5.
The present study describes a stabilization of single quantum dot (QD) micelles by a "hydrophobic" silica precursor and an extension of a silica layer to form a silica shell around the micelle using "amphiphilic" and "hydrophilic" silica precursors. The obtained product consists of approximately 92% single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS QDs) into the silica micelles, coated with a silica shell. The thickness of the silica shell varies, starting from 3-4 nm. Increasing the shell thickness increases the photoluminescence characteristics of QDs in an aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a comparatively high quantum yield in an aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The surface of the nanoparticles is amino-functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery. The presence of the hydrophobic layer between the QD and silica-shell ensures an incorporation of other hydrophobic molecules with interesting properties (e.g., hydrophobic paramagnetic substances, hydrophobic photosensitizers, membrane stabilizers, lipid-soluble antioxidants or prooxidants, other hydrophobic organic dyes, etc.) in the close proximity of the nanocrystal. Thus, it is possible to combine the characteristics of hybrid materials with the priority of small size. The silica-shelled single QD micelles are considered as a basis for fabrication of novel hybrid nanomaterials for industrial and life science applications, for example, nanobioprobes with dual modality for simultaneous application in different imaging techniques (e.g., fluorescent imaging and functional magnetic resonance imaging).  相似文献   

6.
Cordones AA  Bixby TJ  Leone SR 《Nano letters》2011,11(8):3366-3369
Fluorescence decay times measured during the off-state of single CdSe/ZnS quantum dot blinking are found to decrease with increasing off-state duration, contradicting the charging model widely considered to explain the blinking phenomenon. The change in the nonradiative process of a short off-state duration compared to a long one is investigated here through simultaneous measurement of fluorescence decay and blinking behavior. The results are investigated in the framework of two models based on fluctuating trapping rates.  相似文献   

7.
Through the utilization of index-matched GaAs immersion lens techniques, we demonstrate a record extinction (12%) of a far-field focused laser beam by a single InAs/GaAs quantum dot. This contrast level enables us to report for the first time resonant laser transmission spectroscopy on a single InAs/GaAs quantum dot without the need for phase-sensitive lock-in detection.  相似文献   

8.
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 10(5) optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.  相似文献   

9.
Quantum dots (QDs), semiconductor particles of nanometer dimension, have emerged as excellent fluorescent analogs in tracer experiments with single molecule sensitivity for bioassays. Cell imaging greatly benefits from the remarkable optical and physical properties of these inorganic nanocrystals: QDs are much brighter and exhibit a higher resistance to photobleaching than traditional fluorophores, and their narrow emission spectrum and flexible surface chemistry make them particularly suitable for multiplex imaging. Here, we have demonstrated the achievement of a nanometer spatial resolution on the position of a single QD in a simple optomechanical instrument using a high-sensitivity low-noise detector, an intensified CCD camera. Furthermore, nanometer variations in the amplitude of a QD's sinusoidal oscillations could be quantitatively distinguished after fast Fourier transform (FFT) based data processing. As confirmed by experiments where QDs were attached to the surface of bovine aortic endothelial cells, this method can be exploited in biology to assess molecular and subcellular contributions to responses such as motility, intracellular trafficking, and mechanotransduction, with high resolution and minimal disturbance to cells  相似文献   

10.
For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.  相似文献   

11.
We propose a novel solar cell structure with photonic nanocrystals coupled to quantum dots (QDs) for advanced management of photons and carriers. The photonic nanocrystals at the surface create an extra interaction between the photons and the QDs, which promotes light trapping. Photo-generated carriers can be efficiently transported by preparing vertically aligned QDs with electronic coupling. Implementation of the proposed structure was realized in crystalline Si solar cells with Ge QDs by development of a simple and practical formation method based on a wet chemical process without any lithography techniques. The wet process utilizes a periodically modulated etching rate induced by self-organized Ge QDs. The effectiveness of the proposed solar cell was demonstrated by the marked increase of the absolute conversion efficiency when compared with the control crystalline Si solar cells. It is found that light trapping by the photonic nanocrystals has a larger contribution to the efficiency improvement than the contributions from the carrier transport of the vertically aligned QDs.  相似文献   

12.
The light-emission energy E of self-assembled semiconductor quantum dots (QDs) is determined by the complex interplay of parameters such as compositions of QDs and confining layers (CLs), strain of QDs (imposed by the QD mismatch to CLs) and sizes and shapes of QDs. In order to have RT emission in the 1.55 μm photonic window from InAs QDs, the QD–CL lattice mismatch should be in the 4–5% range, values much lower than that of pseudomorphic InAs on GaAs (7%). We show that by: i) growing InAs QDs on virtual substrates consisting of metamorphic InGaAs buffers on GaAs and ii) using the thickness-dependent partial relaxation of buffers (acting also as lower CLs, LCLs) and suitable InGaAs compositions, the QD–CL mismatch can be tuned in the 5–7% range. Our experimental results on MBE-grown metamorphic InAs/InxGa1−xAs QD structures show that for x and LCL thicknesses d in the 0.09–0.35 and 20 nm–1000 nm ranges, respectively, the band-gap of the QD material and the band-discontinuities that confine carriers are such that the RT emission wavelengths range from 1.3 μm up to values that may exceed 1.55 μm. By using x and d as two degrees-of-freedom, not only that E can be selected but also the barrier energy for confined carriers' thermal escape can be maximised, in order to achieve efficient emission at RT.  相似文献   

13.
14.
Images of a single-electron quantum dot were obtained in the Coulomb blockade regime at liquid He temperatures using a cooled scanning probe microscope (SPM). The charged SPM tip shifts the lowest energy level in the dot and creates a ring in the image corresponding to a peak in the Coulomb-blockade conductance. Fits to the line shape of the ring determine the tip-induced shift of the energy of the electron state in the dot. SPM manipulation of electrons in quantum dots promises to be useful in understanding, building, and manipulating circuits for quantum information processing.  相似文献   

15.
We report reproducible fabrication of InP-InAsP nanowire light-emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-InP ends of the wire, making these devices promising candidates for electrically driven quantum optics experiments. We have investigated the operation of these nanoLEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.  相似文献   

16.
We control the electrostatic environment of a single InAsP quantum dot in an InP nanowire with two contacts and two lateral gates positioned to an individual nanowire. We empty the quantum dot of excess charges and apply an electric field across its radial dimension. A large tuning range for the biexciton binding energy of 3 meV is obtained in a lateral electric field. At finite lateral electric field the exciton and biexciton emission overlap within their optical line width resulting in an enhancement of the observed photoluminescence intensity. The electric field dependence of the exciton and biexciton is compared to theoretical predictions and found to be in good qualitative agreement. This result is promising toward generating entangled photon pairs on demand without the requirement to remove the anisotropic exchange splitting from asymmetric quantum dots.  相似文献   

17.
Sadeghi SM 《Nanotechnology》2008,19(8):085203
We propose an alternative bottom-up technique for designing, fabricating and monolithically integrating optical components, including functional distributed feedback lasers, modulators, waveguides, etc in a single semiconductor wafer without any need for etching or post-processing epitaxial growth. The proposed technique is based on the formation of semiconductor quantum templates at the well/barrier interfaces of quantum well structures. Such templates are responsible for changing the thickness of a quantum well in designated regions by adding one extra monolayer of the well material in those regions during the growth process. We show that, using a control laser field, these templates or sub-nanoscale high monolayer features allow us to spatially control the formation of electromagnetically induced transparency, gain without inversion, and coherent enhancement/suppression of the refractive index along the plane of the quantum well. We demonstrate that this can lead to bottom-up design capabilities for functional optical devices and their monolithic integration using a single epitaxial growth process.  相似文献   

18.
量子点太阳电池的探索   总被引:2,自引:0,他引:2  
阐述了探索量子点太阳电池的重要意义与物理构想,简要介绍了两种不同结构组态的量子点太阳电池的光伏性能,如p-i-n量子点太阳电池和量子点敏化太阳电池.对发生在各种量子点(PbSe、PbS、PbTe、CdSe和Si)中的因碰撞电离而导致的多激子产生效应及其研究进展进行了重点评述,并提出了设计与制作量子点太阳电池的若干技术对策.可以预期,具有超高能量转换效率、低制作成本与高可靠性的量子点太阳电池的实现,有可能对未来的光伏技术与产业产生革命性的影响.  相似文献   

19.
Hybrid passivated colloidal quantum dot solids   总被引:1,自引:0,他引:1  
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.  相似文献   

20.
Potentiometric immunoassay with quantum dot labels   总被引:1,自引:0,他引:1  
Potentiometric sensors based on polymer membrane electrodes, if properly optimized, are useful for measurements at trace levels. The expected independence of the electrochemical signal of the sample size makes them extremely attractive for measurements in small volumes. Here, we report on electrodes for the potentiometric detection of cadmium ions that reach a detection limit of 6 nM and utilize a Na(+)-selective electrode as pseudoreference in order to facilitate measurements in 150-microL samples. A potentiometric immunoassay of mouse IgG is performed via CdSe quantum dot labels on a secondary antibody according to a sandwich immunoassay protocol in a microtiter plate format. The CdSe quantum dots are found to be easily dissolved/oxidized in a matter of minutes with hydrogen peroxide, allowing us to maintain the pH at a near-neutral value. The potentiometric protein immunoassay exhibits a log-linear response ranging from 0.15 to 4.0 pmol of IgG, with a detection limit of <10 fmol in 150-microL sample wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号