首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clipping is a simple scheme to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Further, it can be extended to space-time block coding (STBC) multiple-input multiple-output (MIMO) OFDM systems for the PAPR reduction. In the conventional clipping schemes for STBC MIMO-OFDM systems, the input symbols are first encoded and then clipped. In this paper, a new scheme is proposed, where the clipping operation is performed before space-time block coding. We theoretically prove that the proposed scheme has better bit-error rate (BER) performance while maintaining the same PAPR reduction as the conventional schemes. Additionally, we derive the symbol-error rate (SER) and BER expressions for the new scheme over multipath fading channels. The simulation results show a good match with our analysis.  相似文献   

2.
In recent years, many peak-to-average power ratio (PAPR) reduction techniques have been proposed for orthogonal frequency division multiplexing (OFDM) signals. Among various techniques, the iterative clipping and filtering (ICAF) technique has been considered as a practical scheme, and widely used owing to its non-expansion of bandwidth, low computational complexity, and simplicity in implementation without receiver-side cooperation. However, the performance of conventional ICAF technique is degraded, because the same signals are iteratively clipped with a fixed clipping threshold (CT) in every clipping operation. In this paper, we analyze the performance of conventional ICAF technique, and then propose an adaptive ICAF scheme, which clips the signal with an adaptively modified CT in every clipping operation to achieve enhanced PAPR reduction of OFDM signals. Simulation results show that the proposed scheme significantly outperforms the conventional scheme, in PAPR reduction of OFDM signals at the same number of iterations.  相似文献   

3.

One of the main disadvantages of multicarrier transmission is the high peak-to-average power ratio (PAPR) of the transmitted signal. If the highest transmitted power is confined by the application restrictions or regulatory, the result is to decrease the average power permitted under multicarrier transmission. Selected mapping (SLM) is a standard PAPR reduction scheme that is appropriate for orthogonal frequency division multiplexing (OFDM) scheme as it realizes the performance of PAPR reduction without signal distortion. This paper proposes a method in order to handle the difficulties of high PAPR in OFDM scheme. The offered system is an arrangement of two distinguished methods, such as clipping and SLM. Compared to other hybrid methods, where the individual methods are implemented sequentially, this paper integrates the clipping method in the SLM procedure. This produces a supplementary PAPR reduction associated to the serial arrangement. Simulation results specify that the offered scheme acquires the performance of appropriate PAPR reduction with low computational complexity. The PAPR reduction at different number of subcarriers is analyzed and compared with the existing research work. The performance of relative energy efficiency has also been focused on this paper.

  相似文献   

4.
Intercarrier interference (ICI) self-cancellation, new ICI self-cancellation and conjugate cancellation schemes have been proposed in the literature to mitigate the effect of ICI. In this paper we have performed the mathematical analysis of PAPR performances for ICI self-cancellation, new ICI self-cancellation and ICI conjugate cancellation schemes and it is found that PAPR performance of these schemes are either very close to or poorer than the standard OFDM signal, which necessitates the requirement of PAPR reduction. After realizing the need of PAPR reduction in ICI cancellation schemes, we have proposed a joint scheme to reduce ICI and PAPR simultaneously. In this paper, we have proposed a multipoint partial transmit sequence (PTS) scheme, to improve the PAPR performance of ICI cancellation schemes. The proposed multipoint PTS based PAPR reduction scheme is coupled with ICI cancellation schemes in such a way that CIR performance of these schemes after coupling remains unchanged and no SI is required at the receiver to recover the original data signal. A comparison of CIR and PAPR performances for ICI cancellation schemes with and without PAPR reduction is also presented in this paper. The analytical results of CIR and PAPR performances for conventional ICI cancellation and joint ICI cancellation and PAPR reduction confirm the outperformance of the proposed scheme. We have also evaluated the SER performance of the joint schemes over additive white Gaussian noise and fading channels and presented a comparison with other existing schemes.  相似文献   

5.
We apply clipping to superposition coded modulation (SCM) systems to reduce the peak-to-average power ratio (PAPR) of the transmitted signal. The impact on performance is investigated by evaluating the mutual information driven by the induced peak-power-limited input signals. It is shown that the rate loss is marginal for moderate clipping thresholds if optimal encoding/decoding is used. This fact is confirmed in examples where capacity-approaching component codes are used together with the maximum a posteriori probability (MAP) detection. In order to reduce the detection complexity of SCM with a large number of layers, we develop a suboptimal soft compensation (SC) method that is combined with soft-input soft-output (SISO) decoding algorithms in an iterative manner. A variety of simulation results for additive white Gaussian noise (AWGN) and fading channels are presented. It is shown that with the proposed method, the effect of clipping can be efficiently compensated and a good tradeoff between PAPR and bit-error rate (BER) can be achieved. Comparisons with other coded modulation schemes demonstrate that SCM offers significant advantages for high-rate transmissions over fading channels.   相似文献   

6.
针对光正交频分复用(O-OFDM)系统中峰值平均功 率比(PAPR)较高的缺点,对PAPR抑制技术的选择性 映射法(SLM) 进行了深入研究。基于低复杂度SLM方案的深入研究,提出了一种改进的次PAP R选择的思 想与低复杂度SLM相结合的PAPR抑制方案。改 进的SLM方案能够成倍降低传统SLM方案的计算复杂 度。仿真分析表明,改进的SLM方案在载波数为256的O-OFDM系统中,计算复杂度能降低50%以上,并 且随着子载波数的增加,其复杂度降低程度更为高效;同时,该改进的SLM方案又能使其PAPR抑制性能优于传统的SLM方案,从而进一步提升了低复杂度SLM 方案的实用价值。  相似文献   

7.
Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitter's output signal. The selected mapping (SLM) approach provides good performance for PAPR reduction, but it requires a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this requirement usually results in high computational complexity. In this paper, we propose a kind of low-complexity conversions to replace the IFFT blocks in the conventional SLM method. Based on the proposed conversions, we develop two novel SLM schemes with much lower complexity than the conventional one; the first method uses only one IFFT block to generate the set of candidate signals, while the second one uses two IFFT blocks. Computer simulation results show that, as compared to the conventional SLM scheme, the first proposed approach has slightly worse PAPR reduction performance and the second proposed one reaches almost the same PAPR reduction performance.  相似文献   

8.
Orthogonal frequency division multiplexing (OFDM) is perhaps the most spectrally efficient, robust transmission technique discovered so far for communication systems, and it also mitigates the problem of multipath environment. High peak-to-average power ratio (PAPR) has always been a major drawback of the OFDM systems. In this article, a new precoding technique has been proposed based on Vandermonde-like matrix (VLM) and selective mapping (SLM) to reduce PAPR in OFDM systems. VLM precoding reduces the autocorrelation of the input sequences while SLM takes an advantage of the fact that the PAPR is very sensitive to phase shifts of the signal. The main advantage of this proposed scheme is to achieve a significant reduction in PAPR without increasing the system complexity. Computer simulations show that, the proposed method outperforms the existing precoding techniques without degrading the error performance of the system.  相似文献   

9.
One of the effective methods used for reducing peak‐to‐average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems is selected mapping (SLM). In this paper, a new SLM scheme called DSI‐SLM, which is a combination of dummy sequence insertion (DSI) and conventional selected mapping (C‐SLM) is proposed. Previous techniques have had some drawbacks. In DSI, increasing the number of dummy sequences to have better PAPR degrades transmission efficiency, and in C‐SLM, the complexity rises dramatically when the number of sub‐blocks increases. The proposed DSI‐SLM scheme significantly reduces the complexity because of the reduction in the number of sub‐blocks compared with the C‐SLM technique while its PAPR performance is even better. To enhance the efficiency of the OFDM system and suppress the out‐of‐band distortion from the power amplifier nonlinearity, a digital predistortion technique is applied to the DSI‐SLM scheme. Simulations are carried out with the actual power amplifier model and the OFDM signal based on the worldwide interoperability for microwave access standard and quadrature phase‐shift keying modulation. The simulation results show improvement in PAPR reduction and complexity, whereas the BER performance is slightly worse. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
高的峰值平均功率比(Peak-to-Average Power Ratio,PAPR)是光正交频分复用(Optical Orthogonal Frequency Division Multiplexing,O-OFDM)系统的一个主要缺点,选择性映射(Selective Mapping,SLM)法能有效降低高PAPR出现的概率,但它的计算复杂度较高.一些低复杂度的SLM方案能够有效地降低复杂度,但同时也降低了PAPR的抑制性能.为了平衡这两个因素,将低复杂度SLM方案与次优选择的思想相结合,文章提出了一种联合改进的PAPR抑制方案.在低复杂度方案中,通过将一个复频域信号分为两个实信号,再利用快速傅里叶变换(Fast Fourier Transform,FFT)的平移和反折性质将其重建成新的信号,以得到更多的备选信号,如此便能降低计算复杂度.然后,再结合次优选择的思想,选择PAPR最小的一路以得到最优的PAPR抑制性能.仿真结果验证了该方案的有效性.  相似文献   

11.
Many PAPR reduction schemes have been proposed for OFDM systems. Among these, the signal scrambling methods such as the partial transmit sequences (PTS) (S. H. Muller, et al., 1997) and selective mapping (SLM) (R. W. Bauml, et al., 1996) are attractive as they obtain better PAPR property by modifying OFDM signals without distortion. These schemes can also be applied to a SFBC MIMO-OFDM system, which is advantageous for dispersive channels, in a straightforward way by performing signal scrambling on data sequence before it is distributed to the transmit antennas according to employed encoding scheme. Note however that in the case of PTS PAPR reduction in the time domain is not possible, which leads to prohibitively large complexity of such scheme. In this letter, we introduce more effective approach, the polyphase interleaving and inversion (PII) PAPR scheme and its reduced complexity version (RC-PII), which is designed to suppress peaks in SFBC-OFDM, transmit diversity.  相似文献   

12.
由于光正交频分复用(O-OFDM)系统中的峰值平均功率比(PAPR)较高,针对传统的选择性映射(C-SLM)方案计算复杂度较高,而一些低复杂度SLM(LC-SLM)方案的峰均比抑制性能不佳的问题,为了在降低计算复杂度的同时兼顾PAPR的抑制性能,提出一种基于LC-SLM方案和Clipping技术联合改进的PAPR抑制方案。在低复杂度方案中,O-OFDM信号的实部和虚部被分开处理以期获得更多的备选信号,再结合Clipping技术把信号限定在门限值范围内,最后再选择PAPR最小的一路信号从而得到最优的PAPR抑制性能。仿真结果表明该方案具有较好的优越性以及较高的利用价值。  相似文献   

13.
In this paper, two selected mapping (SLM)‐based schemes are proposed to reduce the peak‐to‐average power ratio (PAPR) in the orthogonal frequency division multiplexing (OFDM) systems. One is SLM‐based partial data circulation (PDC) scheme. The other is SLM‐based PDC with hamming coded side information (SI) scheme. In the PDC scheme, the partial samples within the data sequence are scrambled by circularly shifting to obtain a set of candidate sequences and, then, each sequence is combined with the corresponding SI to form the candidate OFDM symbol. With the selection of the candidate OFDM symbols with the lowest PAPR, the PAPR of the transmitted signal could be greatly reduced. In the other scheme, hamming code is used to protect the SI to improve the system performance. Simulation results show that the proposed method could reduce PAPR and it has a better bandwidth efficiency and less modules of inverse fast Fourier transform than that with the SLM‐based dummy sequence insertion scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The orthogonal frequency division multiplex (OFDM) technique, which is used in the 4G communications, has a shortcoming of having a high peak to average power ratio (PAPR), and thus a lot of research has been conducted to reduce the PAPR in OFDM systems. The typical algorithms in this research area are the multi-time clipping algorithm, the \(\mu \)-law compression algorithm, SLM algorithm, PTS algorithm, and Golay complement sequence algorithm. It is found in this paper that the SLM and PTS algorithms have good performance in reducing the PAPR while having less information overhead than the Golay complement sequence algorithm, less distortion than the \({\mu }\)-law compression algorithm, and less BER than the clipping algorithm. Thus, a new PAPR reduction algorithm is proposed, which tries to intelligently apply both PTS and SLM algorithm, while utilizing their complementary advantages and avoiding their disadvantages. According to simulation results, the performance of the proposed algorithm has much better performance in reducing the PAPR than the SLM and PTS algorithms, with comparable computational complexity, BER performance, and information overhead.  相似文献   

15.
The performance of the strictly band-limited OFDM systems with deliberate clipping is examined in terms of the peak-to-average power ratio (PAPR) and the resultant bit error performance. The clipping is performed on the OFDM signals sampled at the Nyquist rate, followed by the ideal low-pass filter, Since the low-pass filter considerably enlarges the PAPR, there is a severe limitation in PAPR reduction capability. Thus, in order to achieve further reduction of the PAPR, the application of the adaptive symbol selection scheme is also considered. It is shown that the significant PAPR reduction with moderate complexity can be achieved by the combination of the clipping and the adaptive symbol selection. The price to be paid for PAPR reduction by this scheme is its performance degradation. The paper theoretically analyzes the bit error rate performance of the OFDM system with the Nyquist-rate clipping combined with the adaptive symbol selection, and considers the use of the forward error correction for compensation of the degradation. It is shown that even though the clipping scheme causes severe loss in required signal-to-noise ratio, the use of a powerful channel coding scheme such as turbo codes significantly alleviates the bit error rate performance degradation  相似文献   

16.
正交频分复用(OFDM)具有很高的频谱利用率和良好的抗多径衰落能力,是卫星通信备受关注的新技术之一。但OFDM信号峰值平均功率比(PAPR)较高的问题限制了其在卫星通信系统中的应用。针对卫星通信高数据率和高可靠性传输的要求,提出一种新的抑制QAM-OFDM信号PAPR的部分格状(PT)成形技术,分析了QAM-OFDM卫星通信系统在AWGN、频率选择性Rician衰落信道的误比特率性能。仿真实验表明,该技术不仅能有效降低QAM-OFDM信号PAPR,结合纠错编码还可大大改善OFDM卫星通信系统误比特率性能。  相似文献   

17.
A new selective time-domain filtering scheme for reducing the peak-to-average power ratio (PAPR) in orthogonal frequency-division multiplexing (OFDM) systems is proposed. The proposed scheme not only relies on conventional pilot symbol channel estimation and demodulation techniques to recover the data in OFDM systems but also uses additional pilot symbols. The proposed scheme has greatly reduced complexity compared with the selective mapping (SLM) scheme and only slightly poorer performance than the SLM scheme. The new scheme achieves significant PAPR reduction at a cost of typically 0.1–0.75 dB in signal-to-noise ratio (SNR) relative to pilot symbol OFDM not having PAPR reduction.   相似文献   

18.
One major defect in orthogonal frequency division multiplexing systems is the high peak‐to‐average power ratio (PAPR) at the transmitter. The linear nonsymmetrical transform (LNST) technique, one of the companding transform (CT) techniques for PAPR reduction, offers excellent performance, but requires additional side information. In this paper, a new ‘root CT’ technique without additional side information is proposed, and it can reach a good trade‐off between the PAPR reduction and the bit error rate (BER). The theoretical analysis of the proposed root technique is also derived. The simulation results show that the proposed root CT technique can achieve more efficient PAPR reduction and better power spectrum density than those of the LNST technique. The BER of the proposed CT technique without additional side information is close to that of the LNST technique with additional side information when the AWGN or multipath fading channels are considered. Furthermore, the simulation results also demonstrate that the proposed technique offers better performance than that of the µ‐law technique over the AWGN and multipath fading channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we propose a novel meta-heuristic optimization algorithm for joint peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. High PAPR not only complicates a distortion of a signal at the nonlinear high-power amplifier of a transmitter the design, but also in significant performance degradation. Tone injection (TI) scheme is a well-known PAPR reduction technique for OFDM systems. The key idea of the proposed method is a distortionless technique that can reduce PAPR significantly without data rate loss and does not require the extra side information. But unfortunately, in optimal TI-based OFDM systems, the PAPR reduction performance mainly requires an exhaustive search over all possible constellations, which is a hard optimization problem and potential problem for practical applications. To address this problem, an efficient scheme based on firefly algorithm is introduced to search over all combinations of possible permutations of the expanded constellation with low complexity and fast convergence. The simulation results reveal that our system can achieve good tradeoff between PAPR reduction performance and low computational complexity.  相似文献   

20.
This paper proposed a modified tone reservation (TR) technique that can reduce the peak‐to‐average power ratio (PAPR) of the orthogonal frequency division multiplexing (OFDM) system and is able to correct errors to avoid channel interference. The TR technique is a widely used PAPR reduction technique, which divides subcarriers of the OFDM system into two sets to generate peak‐canceling signals and transmit modulated data. The subcarriers used to reduce the PAPR are called the peak reduction tone sets. The mechanism of peak‐canceling signal generation is a primary factor in determining the quality of the PAPR reduction performance of the TR technique. Currently, two signal generation mechanisms exist: TR‐gradient‐based and TR‐clipping‐based techniques. Although TR techniques can effectively reduce the high PAPR in the OFDM system, TR techniques lack the ability to correct errors. Therefore, this paper combined block coded modulation codes and TR techniques to provide the modified TR techniques with error correction abilities. From the simulation results, the modified TR techniques had a superior effect on PAPR reduction performance compared with the conventional TR technique. The modified TR technique also possessed the ability to correct errors during signal transmission. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号