共查询到20条相似文献,搜索用时 0 毫秒
1.
弹性常数是工程材料结构设计的重要参数.为了研究孔隙缺陷对三维编织C/C复合材料弹性性能的影响,考虑了纤维增强相、基体相和界面相的孔隙缺陷,建立了孔隙缺陷随机分布的纤维丝尺度和纤维束尺度的双尺度单胞模型,采用均匀化方法预报了含孔隙缺陷的三维编织C/C复合材料等效弹性常数,预报结果与实验结果吻合良好.在此基础上研究了孔隙率... 相似文献
2.
A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas. 相似文献
3.
This paper summarizes an extensive experimental and prediction study of thermal conductivities of three-dimensional woven composites (3DWCs). Three kinds of innovative 3D woven architectures are examined, including 2.5D angle-interlock, 2.5D angle-interlock (with warp reinforcement), and 3D orthogonal woven architectures. The differences of thermal behaviors of 3DWCs in plane and out of plane are assessed by using multi-scale finite element analysis. For the validation of models, the thickness direction thermal conductivity of 3DWCs are measured. It is indicated that the predicted results are in good agreement with the experimental results. The effects of weave density and fabric architecture on the distribution of heat flux and temperature have been discussed in this work, which determined the thermal conductivities of 3DWCs. From this study, it can be expected that the need of thermal performance of 3DWCs can obtained according to optimize the weave parameters based on the high designability of 3DWCs. 相似文献
4.
采用落锤冲击测试方法对几种类型3D整体夹芯机织复合材料板材的抗冲击性能进行测试,将测试结果与2D机织层合板、典型3D机织复合材料的抗冲击性能进行比较,分析影响复合材料抗冲击性能的因素.最后采用SEM分析试样的破坏过程与损伤机理.结果表明:当承受相同的冲击力时,具有合适夹芯结构的材料质量要比典型的三维机织复合材料板材轻的多,即可以满足工程上对结构体本身轻质、高强度性能及能量吸收能量的要求;接结方式的不同将影响复合材料板材的抗冲击性能,贯穿接结复合材料的抗冲击性能优于分层接结的复合材料;复合材料的抗冲击性能将随着增强纤维拉伸强度的增大而增大;在落锤冲击条件下,预制件经、纬纱的织造密度对三维整体夹芯机织复合材料板材的抗冲击性能影响很大. 相似文献
5.
6.
The present study focuses on stiffness properties of woven textile reinforced polymeric composites with respect to hybridization, and geometry of reinforcement. The analyzed composites represent combinations of different fibre materials (E-glass, Kevlar 49, carbon HM) in a predetermined fabric geometry (a plane weave embedded in thermosetting polymeric resin) serving controlled properties and required performance. The effects of hybridization on the stiffness properties of woven textile composites have been studied with respect to the fibres materials, the unbalancing degree of fabrics, and the variation of compactness and undulation of yarns. Some undesirable effects in fabric geometry can be overcome by the combined effects of hybridization and compactness. 相似文献
7.
Applied Composite Materials - The objectives of this experimental study are to develop impact-resistant three-dimensional (3D) woven textile-reinforced composites as well as to clarify the... 相似文献
8.
Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas. 相似文献
9.
10.
11.
A meso-structure model of fiber-bar composites reinforced by three-dimensional weaving (FBCR3DW) is proposed. Optical microscopy images of the preform structure revealed that the fibers along the circumference of the yarn cross-weave were twisted randomly due to alternating yarn winding on either side of the fiber bars during the manufacturing process. Sections of the cross-woven yarn were divided into five regions based on the twist characteristics. Stochastic function theory was used to describe the twist characteristics and to calculate the compliance tensor for each twisted yarn region. The twist characteristics and compliance tensor of each region were then introduced into a finite element model to calculate the elastic properties of the twisted yarn and FBCR3DW; unidirectional tensile stress–strain curves were generated based on the Tsai–Wu failure criterion. Several FBCR3DW specimens with randomly twisted yarns inside the weave structure were used in experimental tests. Our numerical results were in good agreement with the experimental values. Yarn distortion had a significant effect on the elastic properties and axial tensile strength of the yarn; specifically, the influence of yarn distortion on the transverse elastic modulus and transverse shear modulus of FBCR3DW was severe, whereas only a slight effect occurred with regard to the other elastic constants and unidirectional tensile properties. Thus, the proposed method provides an effective reference for modeling fiber composites with a weave structure. 相似文献
12.
本文根据声源辐射理论和线性声场迭加原理,提出了一种三维空间有源消声的数值优化方法。通过最小化适当曲面上由初级声源和次级声源产生的合成声压的平方和,可以求得自由声场中给定区域或全空间声功率最小意义下次级声源的优化幅值和优化相位。这种方法可适用于单极子源和多极子源的情况。如考虑实际次级声源的特性,特别是其相位延迟特性,用本方法所求得的优化频响特性往往比有源消声中常用的“幅频平直、相位相反”的频响特性能更好地用实际模拟电路逼近,因此优化结果具有实用意义。实验表明,由本方法设计出的系统具有较好的消声效果。 相似文献
13.
Guangming Zhou Chang Liu Deng’an Cai Wenlong Li Xiaopei Wang 《Applied Composite Materials》2017,24(4):787-801
An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus. 相似文献
14.
提出一种对叠经多层间隔结构整体机织复合材料的改进方法,该结构复合材料采用增强体嵌入的方式对材料强度进行改进,增加了中空复合材料强度的可设计性。对嵌入用的增强体材料、非嵌入的多层整体机织中空复合材料和嵌入后的多层整体机织中空复合材料分别进行了抗压力学性能测试。在平压和侧压力学测试实验中,嵌入式机织复合材料的力学性能均好于非嵌入机织复合材料,而在平压测试实验中,得到了嵌入式机织复合材料预制体与树脂的共同增强系数为1.40,证明该嵌入式机织复合材料结构设计的合理性。此外得出3种材料侧压的力学性能也均好于平压。 相似文献
15.
本文以2400tex无捻玻璃纤维粗纱为原料,在SGA598型三维织机上制备出一种三维浅交弯联机织复合材料预制体,以环氧树脂E51和固化剂聚醚胺WHR-H023以质量比3∶1的比例组成树脂体系,并将经过表面处理的预制体与树脂基体以质量比1∶1的比例通过手糊的方式复合成型。复合材料固化过程分别使用传统热固化、真空条件下热固化和微波固化三种方式进行,制备出三维浅交弯联机织复合材料。分别考察复合材料在热定型过程中的温度变化情况,复合材料的弯曲力学性能及破坏断面,比较三种方法对复合材料性能的影响。结果表明:采用微波固化方式对复合材料进行复合成型,其在升温速度、弯曲性能和纤维与树脂间的界面性能等方面均明显好于真空固化和热固化等方式。 相似文献
16.
对玄武岩纤维布增强不饱和聚酯复合材料的基本力学性能进行了初步研究,针对纤维织布方式不同,制备了3种不同的复合板,即平纹复合板、斜纹复合板和平纹/斜纹复合板。结果表明,在相同层数17层和19层的条件下,斜纹复合板的拉伸、弯曲和无缺口冲击强度明显高于平纹和平纹/斜纹复合板。平纹/斜纹复合板强度较差,分散性大,而平纹复合板分散性小,物理力学性能稳定。 相似文献
17.
Bing Lei Zhenguo Liu Jixuan Ya Yibo Wang Xiaokang Li 《Applied Composite Materials》2016,23(4):839-856
Cut-edge is a kind of damage for the three-dimensional four-directional (3D4d) braided composites which is inevitable because of machining to meet requisite shape and working in the abominable environment. The longitudinal tensile experiment of the 3D4d braided composites with different braiding angles between cut-edge and the ones without cut-edge was conducted. Then representative volume cell (RVC) with interface zones was established to analyze the tensile properties through the fracture and damage mechanics. The periodic boundary conditions under the cut-edge and uncut-edge conditions were imposed to simulate the failure mechanism. Stress-strain distribution and the damage evolution nephogram in cut-edge condition were conducted. Numerical results were coincident with the experimental results. Finally the variation of cut-edge effect with the specimen thickness was simulated by superimposing inner cells. The consequence showed that thickness increase can effectively reduce cut-edge influence on longitudinal strength for 3D4d braided composites. Cut-edge simulation of braided composites has guiding significance on the actual engineering application. 相似文献
18.
本文根据声源辐射理论、声场叠加原理以及测得的声功率大小与所选取的测量面无关这一特点,提出了一种通过最小化初级声源和次级声源总的声功率对三维空间噪声的主动控制进行优化的数值方法。文中采用边界元近似,将总的声功率表示成次级声源复强度的二次型正实函数。本优化方法是Bullmore 等人提出的解析方法的推广,具有广泛的适用性,可用于设计初级声源在各面元上的声压可知、次级声源到各面元上的声传播可确定的任何场合下控制器优化传递函数。计算过程中仅用了几次复矩阵乘法和一组复系数线性方程组的求解,因此计算简便、速度较快。文中采用这种方法对圆柱壳和无幕活塞辐射器这两种具有典型指向特性的分布初级声源辐射噪声的优化控制问题进行了研究,说明了方法的有效性。文中还给出了实验验证结果。 相似文献
19.
Li Longbiao 《Applied Composite Materials》2016,23(4):555-581
In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress. 相似文献
20.
3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance. 相似文献