首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
MoSi2-based intermetallics containing different volume fractions of MoB or Mo5Si3 were fabricated by hot-pressing MoSi2, MoB, and Mo5Si3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo5Si3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 °C, except when the Mo5Si3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi2 containing materials as consisting mostly of SiO2. The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 °C when compared with pure MoSi2. However, in contrast with the pure MoSi2 material, oxidation at 1400 °C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo5Si3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo5Si3 additions to MoSi2 tended to be detrimental for the mechanical and oxidative properties.  相似文献   

2.
以MoSi2-30Al2O3混合粉末为原料, 利用大气等离子喷涂技术制备MoSi2-Al2O3体系电热涂层。采用XRD、SEM、通电测试、热重-差热分析等对涂层的相组成、组织形貌和热稳定性进行表征。结果表明:MoSi2-30Al2O3电热涂层体系组织均匀致密, 添加Al2O3能改善MoSi2的电阻率及低温抗氧化性; MoSi2-30Al2O3涂层电热性能优异, 在循环加热测试中, 能稳定地加热到320 ℃并长时间保温, 辊面温度分布均匀, 中部温差控制在25 ℃之内; 循环加热过程中的氧化及热应力的弛豫会导致涂层产生裂纹及孔隙进而导致涂层电阻率升高。  相似文献   

3.
The effect of Si3N4 particulates on the thermal expansion coefficient (CTE) of MoSi2 was investigated. It was observed that as the volume percent of Si3N4 increases, the CTE of the MoSi2-Si3N4 composites decreases. In the temperature range 1000–1500 °C, typical of that required for glass melting, about 30–35 vol% Si3N4 particulates are needed in the MoSi2-Si3N4 composites such that the CTE of the composite matches the CTE of Mo.  相似文献   

4.
Undoped and Pd-doped SnO2 films were deposited at various substrate temperatures and discharge gas pressures using reactive magnetron sputtering. Structural factors of the films, such as crystallite size, grain size, and film density, were systematically investigated. The main objectives of this study are to clarify the operation temperature dependence of the H2 sensitivity of these films as well as to clarify the dominant structural factor in the determination of the sensitivity. The operation temperature at which the sensitivity defined by (RaRg)/Rg, where Ra and Rg are the resistances before and after exposure to H2, showed a maximum decreased with decreasing film density. The highest sensitivity of 4470 was obtained for a Pd-doped film with the lowest density of 3.1 g/cm3 at 100 °C. It was found that the sensitivity correlated with film density rather than with crystallite size and grain size. The high sensitivity of a Pd-doped porous film at a low temperature was discussed in relation to the Schottky-barrier-limited transport as well as the chemical and electronic effects of Pd.  相似文献   

5.
二硅化钼喷涂粉末的制备及其涂层组织结构   总被引:1,自引:0,他引:1  
以粒度为1~2μm的MoSi2粉末为原料,采用喷雾干燥和真空烧结制备了喷涂用MoSi2团聚粉末. 分别用平均粒度为9.68μm的MoSi2粉末和团聚造粒MoSi2粉末(38~72μm)为喂料, 大气等离子喷涂制备了二硅化钼涂层,分析了涂层的微观组织结构. 研究结果表明,喷雾干燥造粒后的近球形粉末在1300℃真空烧结1h后,粉末流动性和松装密度分别为17.1s/50g和2.16g/cm3,比烧结前分别增加了57.0%和46.0%.平均粒度为9.68μm 的MoSi2粉末制备的涂层主要是由Mo和Mo5Si3等富钼相组成. 团聚粉末制备的涂层主要由MoSi2相组成,涂层较致密, 内部出现了类似“网状”的组织结构.  相似文献   

6.
This paper addresses the aging behaviour of NiCr/CuNiMn/NiCr triple layers on Al2O3 ceramics at temperatures up to 200°C for film thicknesses d0.5 μm. Investigations of the film structure and the increase of resistance and its temperature coefficient during the annealing process and studies of the dependence of this aging drift on both the film thickness and the storage temperature have been carried out. Furthermore, the film stress and the effect of substrate bending on resistance have been measured. The results can be explained by the irregular film structure (columns and small bridges between them), which causes stress and current concentrations as well as local creeping, cracking and oxidation processes in the micro-bridges. They are compared with such for structurally homogeneous films on silicon wafers.  相似文献   

7.
The interaction between low-k dielectric hydrogen silsesquioxane (HSQ) and Ti barrier layer has been studied using four-point-probe sheet resistance measurement, X-ray diffraction, conventional Rutherford backscattering spectrometry (RBS), nuclear resonance analysis (NRA), elastic recoil detection (ERD), secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS). The conventional intermetal dielectrics SiO2 and plasma-enhanced tetraethylorthosilicate (PETEOS) have been studied also for the purpose of comparison with HSQ. In the low temperature regime (300–550°C), a considerable amount of oxygen atoms, from various sources, diffuses into Ti film to form a Ti(O) solid solution, raising the resistivity of Ti significantly and causing the expansion of the Ti lattice. A good correlation between the oxygen composition in the Ti film, the sheet resistance variation of Ti and the change of Ti lattice parameter C0 have been observed. At the same temperature, there are more oxygen atoms incorporated into the Ti film in Ti/HSQ than those for Ti/PETEOS, suggesting that additional HSQ-related oxygen sources, such as the moisture uptake and the conversion reaction of HSQ, may be attributed to this. In the high temperature regime (550–700°C), HSQ reacts with Ti to form a final TiO/Ti5Si3/HSQ stack structure. It is assumed that a few competing reactions occur in this regime. At 550–650°C, HSQ reacts directly with Ti; in the meantime, part of HSQ undergoes conversion reactions, with the reaction products SiO2 and SiH4 reacting with Ti to form Ti silicide. At 650–700°C, HSQ is almost completely converted into SiO2, so the dominant mechanism is Ti reaction with SiO2. Before HSQ is completely turned into SiO2, the Ti/HSQ system is more reactive than both Ti/PETEOS and Ti/SiO2. The initiating temperature for the Ti/HSQ reaction exhibits no obvious Ti thickness dependence.  相似文献   

8.
The synthesis and formation of MoSi2, Mo5Si3, and Mo3Si compounds by the mechanical alloying of MoSi powder mixtures has been investigated. Ball-milling experiments were conducted for the composition range of 10–80 at.% Si. The formation of molybdenum silicides, especially MoSi2, during mechanical alloying and the relevant reaction rates markedly depended on the powder composition. The spontaneous formation of MoSi2 during mechanical alloying at 67 at.% Si (MoSi2 stoichiometry) proceeded by a mechanically-induced self-propagating reaction (MSR), the mechanism of which is analogous to that of the self-propagating high-temperature synthesis (SHS). At the compositions of 54 and 80 at.% Si, however, the formation of MoSi2 proceeded by the gradual formation of both the and /gb phases instead of the MSR mode. The formation of Mo5Si3 during mechanical alloying was characterized by a slow reaction rate as the reactants and product coexisted over a long period. The milling of Mo-rich powder mixtures up to 150 h did not lead to the direct formation of Mo3Si. The Mo3Si phase appeared only after brief annealing at temperatures of 800°C and above.  相似文献   

9.
Thick film H2 sensors were fabricated using SnO2 loaded with Ag2O and PdOx. The composition that gave highest sensitivity for H2 was in the wt.% ratio of SnO2:Ag2O:PdOx as 93:5:2. The nano-crystalline powders of SnO2–Ag2O–PdOx composites synthesized by sol–gel method were screen printed on alumina substrates. Fabricated sensors were tested against gases like H2, CH4, C3H8, C2H5OH and SO2. The composite material was found sensitive against H2 at the working temperature 125 °C, with minor interference of other gases. H2 gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on SnO2–Ag2O–PdOx nanocrystalline system exhibited high performance, high selectivity and very short response time to H2 at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of H2.  相似文献   

10.
H.L. Wang  C.H. Lin  M.H. Hon 《Thin solid films》1997,310(1-2):260-264
Smooth, uniform and transparent aluminum oxide films were deposited at low temperature (≤ 500°C) by r.f. plasma enhanced chemical vapor deposition (PECVD) with AlCl3, H2 and CO2 as the reactants. The measurements of mechanical and optical properties demonstrate a potential application of PECVD aluminum oxide film as an optical protective coating. The variation of film hardness and density with deposition parameters is apparent and shows a similar dependence while the composition stoichiometry is not so influenced. For amorphous thin films incorporating hydrogen and/or microvoid with no apparent variation on composition stoichiometry, the film hardness is dominated by density and a function near linear can be constructed as energy density is taken into account as an apparent character of hardness.  相似文献   

11.
WSx films were sputter-deposited on Si, SiO2/Si, and glass substrates from a WS2 target in an Ar/H2S atmosphere. Their structure, morphology, chemical composition, and electrical properties were investigated as a function of deposition parameters such as working pressure and H2S fraction. Films could be grown in the composition range WS0.3−WS3.5. Crystallisation was achieved at substrate temperatures Ts > 70 °C and compositions 0.7 ≤ x ≤ 1.95. While the first 5–50 nm near the interface exhibited a basal orientation (c), further growth resulted in the formation of edge-oriented platelets (c) giving rise to a porous, lamellar microstructure. The crystalline structure was mainly turbostratic, while some degree of ordered stacking was present in samples grown at high substrate temperature (600 °C). Resistivity measurements showed a semiconductor-type temperature dependence characterised by activation energies up to 95 meV. Sheet resistance was found to be nearly independent of film thickness, suggesting that the main carrier transport takes place in an interfacial layer of about 20 nm in thickness.  相似文献   

12.
Effect of Al alloying in small concentrations on oxidation behaviour of molybdenum di-silicide (MoSi2) at 1200°C has been investigated. MoSi2–2.8 and 5.5 at.% Al alloys possessed 0.5, and 2.5 at.% Al in solid solution, respectively, and dispersoids of -Al2O3. On the other hand, MoSi2–9 at.% Al alloy possessed 3.1 at.% in solid solution in MoSi2 and Mo(Si,Al)2 phase, besides -Al2O3 dispersoids. The kinetics of oxidation of all the alloys followed a parabolic rate law. The oxidation rate was higher in the MoSi2–Al alloys in comparison to MoSi2, with weight gain values varying by an order of magnitude. The MoSi2–5.5 and 9 at.% alloys demonstrated closely related oxidation characteristics and proved to be more resistant to oxidation than MoSi2–2.8 at.% Al alloy. The oxide scale comprised of SiO2 in MoSi2, mixture of SiO2 and -Al2O3 in MoSi2–2.8 at.% Al alloy, and -Al2O3 in case of MoSi2–5.5 and 9 at.% Al alloys. The mechanism of oxidation has been analysed using thermodynamic and kinetic considerations.  相似文献   

13.
The elestic stiffness parameter Ef/(1−νf) and the thermal expansion coefficient f were obtained for four different silicides (TiSi2, TaSi2, MoSi2 and WSi2) and for two different nitrides (chemically vapor-deposited Nitrox Si3N4 and r.f. plasma SiN) from stress-temperature measurements on identical films deposited on two different substrate materials. The values determined for f and Ef/(1−νf) were quite similar for all silicides and averaged 15 ppm °C−1 and 1.1 × 1012 dyncm−2 respectively. The thermal mismatch of these silicides is such that, once safely formed, the silicide film should be able to withstand high temperature processing steps without cracking. For the nitrides the values were essentially the same (approximately 1.5 ppm°C-1), although the larger value of Ef/(1−νf) chemically vapor-deposited Si3N4 film (3.7 × 1012 as opposed to 1.1 × 1012 dyn cm-2) indicates that it is somewhat stiffer than the SiN film.  相似文献   

14.
A perturbation method is developed to analyze the mass loading sensitivity of planar composite acoustic gravimetric sensors. The sensitivity formulas are obtained in explicit forms for the two lowest sagittal (D1 and D2) modes, the lowest shear horizontal (SH0) mode and high-order SHm modes in a two-layer isotropic composite plate sensor. The composite plate consists of a plate of thickness b coated by a film of thickness h on which the mass loading layer of infinitesimal thickness is deposited. This coating can be a chemically selective film which is assumed to be acoustically thin (h≪λ), where λ is the acoustic wavelength. For Love modes supported by a film coated on a semi-infinite substrate and for Rayleigh modes on a semi-infinite substrate, the sensitivity formulas are expressed in analytical form. These formulas specify the contribution of each material parameter in the substrate and film, and of the elasticity of the mass loading layer for each planar sensor, and provide a general guide for enhancing the sensor sensitivity  相似文献   

15.
The understanding of the oxidation mechanism of 50 wt% SiC–50 wt% AlN composites obtained by means of pressureless sintering without the protective powder bed and with Y2O3 as sintering-aid were significantly improved by means of Raman spectroscopy. These analyses put in evidence that “amorphous carbon” started to be formed at 1300 °C as main effect of active oxidation of SiC. At higher temperature the crystallization process began and it was completed at 1500 °C when only graphite could be recognized. On the basis of these new evidences, oxidation effects on the mechanical properties of SiC–AlN–Y2O3 composites were defined. First of all, heat treatment in air was able to induce a compressive surface stress due to the volume gain associated to the oxidation of the intergranular phase. As a consequence apparent fracture toughness showed a value of 6.6 MPa m1/2 after a heat treatment at 1300 °C, while at higher temperature effects of active oxidation caused a decreasing up to 4.7 MPa m1/2. This toughening mechanism was also used to improve the resistance to thermal shock, which was evaluated by performing quenching tests. Furthermore, passive oxidation induced the healing of superficial flaws by means of the formation of -cristobalite. This phenomenon was assumed to be responsible for the increasing of the flexural strength.  相似文献   

16.
The performance of chemiresistive gas sensors made from semiconducting metal oxide films is influenced by film stoichiometry, crystallographic structure, surface morphology and defect structure. To obtain well-defined microstructures, heteroepitaxial WO3 films were grown on r-cut and c-cut single crystal sapphire substrates using rf magnetron Ar/O2 reactive sputtering of a W target. On r-cut sapphire, an epitaxial tetragonal WO3 phase is produced at a 450°C deposition temperature whereas 650°C growth stabilizes an epitaxial monoclinic WO3 phase. On c-cut sapphire, a metastable hexagonal WO3 phase is formed. RHEED and X-ray diffraction indicate that the films have a ‘polycrystalline epitaxial structure’ in which several grains are present, each having the same crystallographic orientation. STM analysis of the film surfaces reveals morphological features that appear to be derived from the substrate symmetries. The monoclinic phase has a step/terrace growth structure, has the smallest mosaic spread in XRD rocking curves and exhibits the highest degree of reproducibility suggesting that it is the best suited for sensor applications. Measurements of film conductivity versus temperature indicate that the charge transport mechanisms are also dependent on the crystallographic phase and microstructure of the WO3 films.  相似文献   

17.
采用刷涂法在Al2O3基多孔隔热材料表面制备Al2O3/MoSi2涂层,涂层以硅溶胶作为粘结剂,纳米Al2O3与Al2O3纤维作为耐高温组分,MoSi2为高发射率组分。通过SEM、XRD对Al2O3/MoSi2涂层微观表面结构、物相组成进行分析。研究纳米Al2O3与Al2O3纤维的质量比和MoSi2含量对Al2O3/MoSi2涂层耐温性能的影响,并对Al2O3/MoSi2涂层的抗热震性能、发射率进行表征。结果表明,当纳米Al2O3与Al2O3纤维的质量比小于1∶1时,热考核后Al2O3/MoSi2涂层表面无裂纹产生;当纳米Al2O3与Al2O3纤维的质量比在1∶2~1∶4之间时,Al2O3/MoSi2涂层中的纤维网络较完整。MoSi2的含量为20%时,Al2O3/MoSi2涂层抗热震实验循环25次后表面保持完好,热考核后在2.5~25 μm波段的平均发射率在0.85左右,具有较高的发射率。   相似文献   

18.
Fracture toughness and notch ductility tests were performed on two heats of A508 steel tested over the temperature range between 100°C and 450°C. Both types of experiments showed that the materials exhibited a ductility trough at temperatures close to 300°C. At this temperature tensile tests showed the existence of strain aging phenomenon. Tests on axisymmetric notched tensile specimens were used to derive the critical value for void growth, Rc/R0, used in a model for ductile fracture. A good correlation between JIc and Rc/R0 was observed. This was used to predict the variations of JIc with temperature. A reasonable agreement between the predicted values and the experimental results is observed.  相似文献   

19.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

20.
ZrO2 films of thicknesses varied in the range of 3–30 nm were atomic layer deposited from ZrI4 and H2O–H2O2 on p-Si(100) substrates. The effects of film thickness and deposition temperature on the structure and dielectric properties of ZrO2 were investigated. At 272 and 325 °C, the growth of ZrO2 started with the formation of the cubic polymorph and continued with the formation of the tetragonal polymorph. The ratio between the lattice parameters increased with the film thickness and growth temperature. The effective permittivity, determined from the accumulation capacitance of Hg/ZrO2/Si capacitors, increased with the film thickness, reaching 15–17 in 25-nm-thick films. The permittivity decreased with the increasing growth temperature. The hysteresis of the capacitance–voltage curves was the narrowest for the films deposited at 325 °C, and increased towards both lower and higher deposition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号