首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure Cu was processed by ECAP at five different temperatures from room temperature (RT) to 523 K. The influence of pressing temperature on microstructure evolution and tensile behavior was investigated in detail. The results show that as the ECAP temperature is increased the grain size and ductility both increase whereas the dislocation density and yield strength decrease. In the case of ECAP processing in the range of RT to 473 K the mechanism governing microstructural refinement is continuous dynamic recrystallization (CDRX), whereas at 523 K the mechanism changes to discontinuous dynamic recrystallization (DDRX). At higher ECAP temperatures, the kinetics of CDRX are retarded leading to a lower fraction of equiaxed grains/high‐angle grain boundaries and a higher fraction of dislocation cell structures. At 523 K, DDRX induces a high fraction of equiaxed grains with a very low dislocation density which appears responsible for the observed high tensile ductility. The sample processed at 523 K possessed a good combination of strength and ductility, suggesting that processing by ECAP at elevated temperatures may be a suitable alternative to RT ECAP processing followed by subsequent annealing.  相似文献   

2.
在室温下采用等通道转角挤压(ECAP)对工业纯铝(CP-Al)圆棒料进行12道次挤压,通过光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、单向拉伸与电化学测试研究了超细晶纯铝的微观组织、力学性能和耐腐蚀性能.结果表明,ECAP后纯铝试样晶粒细化,4道次和8道次后晶粒尺寸分别达到576、482 nm.同时,显微硬度和抗拉强度显著提高,由初始的26.8 HV、79.2 MPa分别增加到8道次的48.3 HV、146.4 MPa,而塑性有所降低,断裂伸长率由初始的22.1%降低到4道次的9.5%.在质量分数为3.5%NaCl溶液中进行了开路电位(OCP)、极化曲线(PD)及电化学阻抗谱(EIS)测试,并观察腐蚀形貌.研究表明,随着ECAP道次的增加,腐蚀电位正移(-0.965~-0.860 V)、电荷传递电阻增大(1.741×10~4~4.798×10~4Ω·cm~2)、点蚀电位正移(-0.818~-0.734 V)、腐蚀电流密度降低(12.910~3.288μA/cm2),且腐蚀形貌有所改善,表明其耐腐蚀性能提高.这是由于随着挤压道次的增加,晶粒细化,加速了表面钝化膜的形成,形成的钝化膜更为致密,从而降低了腐蚀速率.  相似文献   

3.
Commercial purity titanium was processed by equal-channel angular pressing (ECAP) for 8 passes and then subjected to dynamic compressive testing using a split-Hopkinson pressure bar (SHPB) facility with an imposed strain rate of ~4000 s?1 and testing temperatures from 288 to 673 K. The results show that ECAP produces an average grain size of ~0.3 μm in transverse sections, but grains which are elongated in longitudinal sections. During dynamic compressive testing at temperatures ranging from 288 to 473 K, the grain shapes and sizes remain unchanged in the transverse sections, but the elongated shapes in the longitudinal sections evolve into polygons due to cell dislocation evolution. At 673 K, the grains become equiaxed with an average size of ~1.8 μm thereby demonstrating the occurrence of dynamic recrystallization. It is shown that the flow stresses decrease with increasing temperature from 288 to 673 K, and there is also a reduction in the rate of strain hardening.  相似文献   

4.
Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti13Nb13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in α phase till four passes while the evolution of characteristic ECAP texture in the β phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in α phase weakens while the β phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in α phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in β phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the β phase.  相似文献   

5.
The Mg-6Zn-2Al alloy was processed by ECAP and microstructure and mechanical properties of the alloy before and after ECAP were studied. The results revealed that the microstructure of the ZA62 alloy was successfully refined after two-step ECAP (2 passes at 473 K and 2-8 passes at 423 K). The course bulk interphase of Mg51Zn20 was crushed into fine particles and mixed with fine matrix grains forming “stripes” in the microstructure after the second step of ECAP extrusion. A bimodal microstructure of small grains of the matrix with size of ∼0.5 μm in the stripes and large grains of the matrix with size of ∼2 μm out of stripes was observed in the microstructure of samples after 4-8 passes of ECAP extrusion at the second step. The mechanical properties of the alloy studied were significantly improved after ECAP and the highest yield strength and elongation at room temperature were obtained at the samples after 4 and 8 ECAP passes at the second step, respectively. Tensile tests carried out at temperature of 473 K to 573 K and strain rate of 1 × 10−3 s−1 to 3 × 10−2 s−1 revealed that the alloy after 8 ECAP passes at the second step showed superplasticity and the highest elongation and strain rate sensitivity (m-value) reached 520% and 0.45, respectively.  相似文献   

6.
The combination of equal channel angular pressing (ECAP) and heat treatment was carried out to modify the microstructure of a Cu–Al–Be–B shape memory alloy. Microstructures of the alloy after ECAP and subsequent quenching were investigated by optical microscopy and X-ray diffraction (XRD). The alloy with 8 passes of ECAP at 743 K is characterized with ultra-fine grains (~ 2 μm), but with smaller fraction of martensites which implies the lower shape memory effect (SME). After reheated at 873 K and oil-quenched to room temperature, the grains become coarsen (~ 50 μm) but still finer than that of as-received (100–300 μm), and the fraction and order of martensites were increased simultaneously.  相似文献   

7.
Abstract

An as cast Al–Mg–Mn alloy with coarse equiaxed grain structure was processed by equal channel angular pressing (ECAP) at 350°C up to eight passes. Systematic studies were made on the microstructural evolution during ECAP by optical microscopy, electron backscattered diffraction and TEM. Equal channel angular pressing led to a considerable grain refinement, resulting in an average cell size of about 1 μm and a fraction of high angle boundaries of 75% after eight pressing passes. Deformation bands were not developed during the ECAP process, and a reasonably equiaxed substructure was obtained even after one pass. The main mechanism of grain refinement was attributed to the continuous dynamic recrystallisation based on the motion of deformation induced dislocations. Discontinuous recrystallisation at grain boundaries and triple junctions also contributed to the refinement, which played an important role especially at high strain of eight passes.  相似文献   

8.
通过多道次等通道转角挤压(ECAP)和退火热处理,制备不同组织结构状态的超细晶工业纯铁,采用透射电镜观察微观组织结构特征,并用电化学极化和阻抗谱技术表征超细晶纯铁在含氯离子的钝化介质中点蚀行为。结果表明:随着ECAP加工道次增加,低道次形成的高位错密度板条状结构转变为低位错密度等轴晶;ECAP样退火热处理后,位错减少、大角度晶界增加。ECAP加工道次对纯铁自钝化性能影响不大,开路电位和极化电阻变化均较小;耐点蚀性能与加工道次有关,点蚀电位随加工道次先下降后升高;退火处理后自钝化性能和耐蚀性提高,开路电位、极化电阻和点蚀电位均明显增大。  相似文献   

9.
The microstructure evolution and tensile properties of ZK60 magnesium alloy after equal channel angular pressing (ECAP) have been investigated. The results show that the two-step ECAP process is more effective in grain refinement than the single-step ECAP process due to the lower deformation temperature, a mean grain size of ~0.8 μm was obtained after two-step ECAP process at 513 K for four passes and 453 K for four passes. The EBSD examination reveals that ZK60 alloy after two-step ECAP process exhibits a more homogeneous grain size and misorientation distribution than single-step ECAP process. Both alloys after ECAP process present similar strong {0002} texture. The tensile strength of two-step ECAP alloy has also been improved compared with the single-step ECAP alloy. The strengthening effect was mainly ascribed to grain refinement.  相似文献   

10.
Experiments were conducted on a commercial AZ61 alloy to evaluate the potential for achieving an ultrafine grain size and superplastic ductilities through the use of the EX-ECAP two-step processing procedure of extrusion plus equal-channel angular pressing. The results show that EX-ECAP gives excellent grain refinement with grain sizes of 0.6 and 1.3 μm after pressing at 473 and 523 K, respectively. The alloy processed by EX-ECAP exhibits exceptional superplastic properties including a maximum elongation of 1320% after pressing through four passes when testing at 473 K with an initial strain rate of 3.3 × 10−4 s−1. This result compares with an elongation of 70% achieved in the extruded condition without ECAP under similar testing conditions.  相似文献   

11.
Extruded AZ31 alloy was processed by equal channel angular pressing (ECAP) up to 12 passes at 180 °C following route Bc, i.e. rotating the sample 90° between individual passes. Microstructure evolution was investigated using EBSD and TEM, as a function of strain imposed by ECAP. The first ECAP pass resulted in the formation of a new texture component which relates to the bimodal grain structure observed in this specimen. The grains larger than 10 μm show the orientation changes corresponding to the ECAP shear, which is characterised by the rotation of the basal poles by approximately 40° from the initial orientation. The fine grains with the average size of 1 μm maintain the initial orientation. The character of the bimodal grain structure and the distinct texture components between large and small grains remained unchanged up to 4 ECAP passes. Further ECAP pressing to 8 and 12 passes leads to a grain refinement through the whole sample volume and the orientation changes of all grains corresponding to the ECAP shear.  相似文献   

12.
The stability of ultra-fine grained Al–Mn alloy AA 3103 against coarsening at elevated temperature is analyzed. AA 3103 sheets were produced by means of continuous confined strip shearing (CCSS), which represents an adaptation of equal channel angular pressing to impose severe plastic deformation on sheet samples. With increasing number of CCSS passages, finer and more uniform grains with an increasing fraction of high-angle grain boundaries (HAGBs) were observed. In particular, the sample subjected to 12 passages of CCSS displayed fairly uniform equiaxed grains with an average size of 1.6 μm. During subsequent annealing at 300 and 350 °C, these grains were quite stable, exhibiting a rather low growth rate. This stability is explained in terms of Humphreys’ unified theory of the stability of cellular structures, which has shown that under conditions of very large strains when HAGBs prevail intrinsically stable microstructure will be formed.  相似文献   

13.
A magnesium AZ31 alloy was processed by equal-channel angular pressing (ECAP) for up to 8 passes to reduce the grain size to ~1.0 μm. Following ECAP, microhardness measurements were taken to evaluate the mechanical properties of the material. Ball-on-disc dry sliding tests were conducted to compare the wear behaviour of the as-received alloy and the alloy processed by ECAP. The surface topography and volume loss were recorded for all samples. The results show that the fluctuations and average values of the coefficient of friction are improved after processing by ECAP. In addition, there is a decrease in the wear depth and volume loss with increasing numbers of ECAP passes. The ECAP-processed alloy has a higher wear resistance than the unprocessed alloy and it is a suitable candidate material for use in industrial applications.  相似文献   

14.
为了提高镁合金的耐热性能,在Mg-Zn合金中加入Si,形成Mg-Zn-Si镁合金.采用ECAP工艺在变形温度为573 K和挤压路径为Bc条件下对Mg-Zn-Si镁合金进行不同道次的变形.运用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对变形后的Mg-Zn-Si镁合金进行了组织表征,对变形后的合金进行了室温拉伸和高温蠕变等力学性能测试.结果表明:随着挤压道次增加,α-Mg基体、Mg Zn相及Mg2Si相均得到细化且分布趋于均匀.1道次挤压后部分基体α-Mg细化,4道次挤压后α-Mg的尺寸减小为5~10μm,且晶粒大小趋于均匀;2道次挤压后Mg2Si相枝晶在原位置破碎为颗粒状,6、8道次挤压后Mg_2Si相呈弥散分布.4道次挤压后合金的屈服强度和抗拉强度均提高120%,伸长率提高353%;8道次挤压后合金的抗拉强度和伸长率与4道次相比变化不大,但屈服强度进一步提高了19%.随着挤压道次增加,高温抗蠕变性能提高,8道次后高温稳态蠕变速率降低5倍.Mg2Si相细化机理为受剪切而机械碎断.  相似文献   

15.
Abstract

A large scale billet with diameter of 58·5 mm of an as cast Al–Mg–Mn alloy was processed by equal channel angular pressing (ECAP) at 350°C up to six passes. A significant refinement of the grains was observed after six pressings to ~2 μm. And the selected area electron diffraction (SAED) pattern showed that almost all of the grains were separated by boundaries with high angles of misorientation. A banded substructure was not observed during the hot ECAP, and a reasonably equiaxed structure was obtained just after one single pressing. Both the strength and the elongation increased abruptly in a single passage through the die, but thereafter, the increase was more gradual and exhibited a saturation effect after the fourth pressing. The good combination of strength and ductility of the Al–Mg–Mn alloy attained by the hot ECAP appeared to be attractive properties for industrial applications. Moreover, hot ECAP could possibly be used as an alternative step to hot extrusion or hot rolling in industrial processing, to break down an initial coarse as cast structure in a quite large scale billet.  相似文献   

16.
The microstructure and mechanical properties of equal channel angular pressed (ECAP) Mg–Y–RE–Zr alloy (WE43) are examined. Results show that after ECAP, the average grain size remarkably decreases from ~50?µm at initial state to ~1.5?µm through ECAP for four passes and the homogeneity of microstructure also improves gradually. Meanwhile the secondary-phase β-Mg5RE morphology has obvious transformation from plate-like to spherical. Moreover, the initial random texture is converted to the strong (0002) basal texture. The ultimate tensile strength and yield strength increase in all passes. However, the ductility exhibits a tendency of increase from 1 to 4 passes then decrease from 4 to 12 passes. The variation in strength and ductility is attributed to the effect of specific microstructure evolution.  相似文献   

17.
Cylindrical samples of CP Titanium (Grade 2) were deformed by one, two and three passes of equal channel angular pressing (ECAP) each at temperatures 77, 300 and 575 K, respectively. The microstructure of samples processed at 77 K shows retardation of recrystallisation, high density of dislocations and deformation twins, diffuse and obscure grain boundaries compare to microstructure of samples processed at room and high temperature, where recrystallised ultrafine equiaxed grains are observed. Mechanical properties for all structural states of Ti were studied by microhardness measurements at 300 K and uniaxial compression at temperatures 300, 170, 77 and 4.2 K. Higher levels of ECAP deformation (more passes of ECAP) lead to higher values of strength and hardness at all studied temperatures. Decrease of ECAP temperature leads to increase of strength characteristics in all cases. Influence of ECAP and compression temperatures on possible changes of deformation mechanism are discussed.  相似文献   

18.
In this study, effects of equal channel angular pressing (ECAP) on the mixed‐mode fracture toughness of Al‐6063 were investigated. The ECAP process continued up to 5 passes without failure. Grain refinement was obvious after 5 passes of the ECAP process. The average grain size reduced from 45μm to less than 1μm, and textural studies shows aligning the grains in known directions. After 4 passes, yield and ultimate strengths increase respectively from 100 and 209 MPa to 300 and 375 MPa and reduction in elongation was also observed. The microhardness improved after the process. The fracture toughness for different orientations was measured. For pure mode I (opening mode), its value decreased after the first pass from 18.4 to 15.71  ; however, it increased to about 18.8  after the fifth pass. For mixed‐mode loading condition, different orientations were investigated. The results revealed different fracture toughness reductions after the first passes of the process for specimens with different orientations. The fracture surfaces were studied by using scanning electron microscope, and refined equiaxed dimples were observed after the ECAP process.  相似文献   

19.
本文在室温下对铸态3003铝合金实施了道次等效应变约为0.5的等通道转角变形(Equal-channel angular pressing-ECAP),对其夹杂物的碎化、分布和合金的硬度进行了考察。结果表明,第1道次的ECAP加工将合金内部的粗大(长5-15μm、宽1-2μm)且几乎呈连续分布的夹杂物(AlFe(Mn)Si)折断碎化(长1-3μm)并初步分散开,引入大量位错至合金中,提高硬度幅度达66.7%。后续的2-4道ECAP加工将夹杂物分散均匀,但对夹杂物的碎化和硬度影响很小。本文的试验结果说明了ECAP作为一种细化铝合金内部AlFe(Mn)Si夹杂物并使之分布均匀的工艺方法的可行性。  相似文献   

20.
The microstructural evolution of an Al–Zn–Mg–Cu–Sc–Zr alloy prepared by spray deposition via extrusion and equal-channel angular pressing (ECAP) was investigated in this study. Deformation route A for Al–11.5 wt% Zn–2 wt% Mg–1.5 wt% Cu–0.2 wt% Sc–0.15% Zr super-strength alloy was carried out at 573 K by ECAP. The microstructures of extruded and ECAP samples were investigated by means of Electron Backscatter Diffraction (EBSD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). A large amount of dislocation tangles were formed inside grains during ECAP, which further evolved into sub-boundaries and high angle grain boundaries. Microstructure analyses showed that the grain size was refined to 800 nm after 8 passes ECAP from earlier 3.5 μm of sprayed and extruded alloy. A few finer MgZn2 and Al3(Sc,Zr) were dispersed uniformly after ECAP. The textures of 8 passes ECAPed sample were dominated by the strong Cu orientation and relatively weak S orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号