首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The preparation processes and ferroelectric characteristics of barium cation-incorporated SrBi2Ta2O9 thin films have been investigated in this study. Complete solid solutions of (Sr1−xBax)Bi2Ta2O9 thin films are formed on Pt/Ti/SiO2/Si substrates using a metalorganic decomposition method after annealing at 700°C. The lattice constant along the c-axis of formed solid solutions monotonously increases with increasing the contents of barium cations. The microstructure and surface morphologies of films significantly vary with the composition. The grain size and the roughness of (Sr1−xBax)Bi2Ta2O9 films increases as the contents of barium cations increase. All prepared films exhibit ferroelectric characteristics. Increasing the annealing temperature is found to significantly enhance the remanent polarization of prepared thin films. In the formed solid solutions, (Sr0.5Ba0.5)Bi2Ta2O9 thin films exhibit the highest remanent polarization. This is attributed to large grain size and preferred a-axis orientation of formed films.  相似文献   

2.
The crystallization of lead zirconate titanate (PZT) thin films was evaluated on two different platinum‐coated Si substrates. One substrate consisted of a Pt coating on a Ti adhesion layer, whereas the other consisted of a Pt coating on a TiO2 adhesion layer. The Pt deposited on TiO2 exhibited a higher degree of preferred orientation than the Pt deposited on Ti (as measured by the Full Width at Half Maximum of the 111 peak about the sample normal). PZT thin films with a nominal Zr/Ti ratio of 52/48 were deposited on the substrates using the inverted mixing order (IMO) route. Phase and texture evolution of the thin films were monitored during crystallization using in situ X‐ray diffraction at a synchrotron source. The intensity of the Pt3Pb phase indicated that deposition on a highly oriented Pt/TiO2 substrate resulted in less diffusion of Pb into the substrate relative to films deposited on Pt/Ti. There was also no evidence of the pyrochlore phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented 111 texture of PZT on the Pt/TiO2 substrate than on the Pt/Ti substrate.  相似文献   

3.
《Ceramics International》2016,42(13):14431-14437
Lead zirconate titanate Pb(ZrxTi1−x)O3 films with various Zr/Ti ratios of 20/80, 40/60, 52/48, 60/40 and 80/20 are deposited on highly dense CoFe2O4 ceramics using a simple chemical solution deposition. All Pb(ZrxTi1−x)O3 films are polycrystalline and have no preferential orientations. The dielectric, ferroelectric, piezoelectric and magnetoelectric properties strongly depend on the Zr/Ti ratio. And the Pb(ZrxTi1−x)O3 films with a Zr/Ti ratio close to morphotropic phase boundary exhibit best properties, whose magnetoelectric coefficient is over 1.5 times larger than those of other Zr/Ti ratios. The introduction of a PbO seeding layer between the Pb(Zr0.52Ti0.48)O3 films and CoFe2O4 substrates facilitates the (100)-texture. Therefore, the magnetoelectric coefficient was enhanced by 1.5 times. The further improvement of the magnetoelectric coupling could be anticipated by fabricating Pb(Zr0.52Ti0.48)O3 films with more or absolute (100)-texture and using conductive interfacial layer between two phases.  相似文献   

4.
(Bi0.5Na0.5)TiO3 thin film growth by ex situ sputtering has been investigated and reported in this paper. An original approach, based on the growth process, was used in order to precisely control the film composition, which has never been reported in BNT growth. The bismuth content in the films and so the composition of amorphous sputtered films was controlled by a slight heating of the substrate during the growth (150–240°C). Then, films were crystallized, obviously without any change in composition, by a post-annealing treatment. More precisely, without substrate heating and using a stoichiometric target, the film presents an excess of Bi but when it is deposited at 200°C the film becomes stoichiometric. It was shown that the sticking coefficient of Bi is particularly sensitive even at low substrate temperatures, whereas Na and Ti sticking coefficients are not impacted. Followed by a post-annealing in air at 650°C, the composition of the amorphous BNT films deposited at 200°C remains stoichiometric and the film exhibits a high (100) preferred orientation in a pure perovskite phase and a dense microstructure. The evaluation of the electrical properties as a function of the Bi content in the film, adjusted by the deposition temperature, shows a strong impact on the ferroelectric properties where the best performances were obtained with the stoichiometric BNT film deposited at 200°C.  相似文献   

5.
《Ceramics International》2017,43(8):5901-5906
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thin films were deposited on Pt/Ti/SiO2/Si substrates annealed from 550 to 700 °C using sol-gel process. The effects of annealing temperature on microstructure, insulating, ferroelectric and dielectric properties were characterized. The result reveals that 0.65PMN-0.35PT thin films possess a polycrystalline structure, matching well with the perovskite phase despite the existence of a slight pyrochlore phase. The film samples annealed at all temperatures exhibit relatively dense surfaces without any large voids and the grain size increases generally with the increase of the annealing temperature. Meanwhile, pyrochlore phase is considerably generated because of the deformation of perovskite phase caused by volatilization of Pb at an excessive high-temperature. The film annealed at 650 °C exhibits superior ferroelectricity with a remanent polarization (Pr) value of 13.31 μC/cm2, dielectric constant (εr) of 1692 and relatively low dielectric loss (tanδ) of 0.122 at 104 Hz due to the relatively homogeneous large grain size of 130 nm and low leakage current of approximately 10-6 A/cm2.  相似文献   

6.
Thin films of Pb(Zr0.52Ti0.48)O3 (PZT) were prepared by hybrid processing (sol-gel and excimer laser ablation) on Pt/Ti/SiO2/Si substrates. Crystalline phases and microstructures of the PZT films were investigated by X-ray diffraction analysis and scanning electron microscopy, respectively. Electrical properties of the films were evaluated by measuring their P - E hysteresis loops and dielectric constants. The temperature of postdeposition annealing in hybrid processing was lower than that in the case of direct film deposition by laser ablation on a Pt/Ti/SiO2/Si substrate. The preferred orientation of the films derived by hybrid processing could be controlled using the seeding layer deposited by the sol-gel process. The films fabricated by hybrid processing consisted of the perovskite phase with a (111) preferred orientation and had good ferroelectric properties.  相似文献   

7.
在ITO玻璃衬底上制备锆钛酸铅铁电薄膜   总被引:4,自引:0,他引:4  
利用射频反应性溅射沉积技术在掺的Sn的In2O3导电透明膜衬底上制备了钙钛矿型Pb(Zr,Ti)O3(PZT)铁电薄膜。研究了沉积参量与热处理工艺对铁电薄膜结构和性能的影响。运用X射线衍射、X射线光电子能谱和扫描电镜等技术,分析了薄膜的晶体结构、表面形貌和表面元素化学状态。测量了不同处理条件下薄膜的铁电性能。结果表明:在掺Sn的In2O3导电透明膜衬底上可以得到表面无裂纹,化学计量比符合要求的PZ  相似文献   

8.
Electrodeposition of PbTe thin films from acidic nitrate baths   总被引:1,自引:0,他引:1  
Electrodeposition of PbTe thin films from an acidic nitric bath was systematically investigated to understand the kinetics and the effect of electrodeposition conditions on film composition, crystallographic structure, texture and grain size. The electroanalytical studies employed initially with a rotating disk electrode to investigate the kinetics associated with Te, Pb and PbTe electrodeposition. The results indicated that the PbTe thin films were obtained by the underpotential deposition (UPD) of Pb atoms onto the overpotentially deposited Te atoms on a substrate.Based on these studies, PbTe thin films were potentiostatically electrodeposited using e-beam evaporated gold thin films on silicon substrate to investigate the effect of various deposition conditions on film composition and microstructure. The data indicated that the microstructure, composition and preferred film growth orientation of PbTe thin films strongly depended on the applied potential and electrolyte concentration. At −0.12 V, the film was granular, dense, and preferentially oriented in the [1 0 0] direction. At potentials more negative than −0.15 V, the film was dendritic and preferentially oriented in the [2 1 1] direction. A smooth, dense and crystalline film with nearly stoichiometric composition was obtained at −0.12 V from a solution containing 0.01 M HTeO2+, 0.05 Pb2+ and 1 M HNO3.  相似文献   

9.
《Ceramics International》2016,42(14):15793-15797
Lead-free barium tin titanate BaTi0.85Sn0.15O3 (BTS) ferroelectric thin films have been deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. The structure and dielectric properties of thin films deposited at various oxygen pressures are investigated systematically. By optimizing the oxygen pressure during the deposition, the structure and dielectric properties are improved. The thin films grown at 15 Pa have the best crystal quality and the largest grain size, which result in the enhancement of the dielectric properties. The dielectric constant and loss tangent show the similar trend in the entire oxygen pressure range. The influence mechanisms of the oxygen pressure on the structure and dielectric properties are proposed. The BTS thin films deposited at 15 Pa with large figure of merit (FOM) of 81.1, high tunability of 72.1%, moderate dielectric constant of 341, low loss tangent of 0.009 are considered to be appropriate as a field tunable ferroelectric material for electrically tunable devices.  相似文献   

10.
Pb(Zr,Ti)O3 (PZT) thick films were deposited onto stainless-steel substrates by aerosol deposition using different kinds of carrier gases and were irradiated by CO2 laser both during and after deposition, for the recovery of ferroelectricity. The ferroelectric and dielectric properties of PZT films deposited using oxygen and nitrogen gases and irradiated by CO2 laser were superior to those of films deposited using He gas and irradiated by the laser. Some kinds of defects within the film were relaxed by CO2 laser irradiation during deposition, and grain growth in the film was promoted by post-annealing using laser irradiation.  相似文献   

11.
The lead-free ferroelectric films of Bi4?xLaxTi3O12(BLTO) and ferromagnetic films of Ni1?xMnxFe2O4(NMFO) were prepared on Pt/Ti/SiO2/Si substrate by means of the sol-gel and spin-coating method. The lead-free magnetoelectric composite films with the structure of Bi3.4La0.6Ti3O12/Ni0.7Mn0.3Fe2O4/substrate (BN) and Ni0.7Mn0.3Fe2O4/Bi3.4La0.6Ti3O12/ substrate (NB) were also deposited on Pt/Ti/SiO2/Si substrate. The X-ray diffraction results show that two composite films possess BLTO and NMFO phases without any intermediate phase. The SEM images show that two composite films exhibit layered structure, clear interface and no transition layer between BLTO and NMFO films. Two composite films exhibit both good ferromagnetic and ferroelectric properties, as well as magnetoelectric coupling effect. The deposition sequence of ferroelectric and ferromagnetic films in the composite films has significant influence on the ferroelectric, ferromagnetic and magnetoelectric coupling properties of the composite films. The values of magnetoelectric voltage coefficient of the BN composite films are higher than those of the NB composite films at any fixed Hbias.  相似文献   

12.
Lead zirconate titanate (PZT) precursor sols were prepared using a triol based sol–gel route. Inorganics salts metal alkoxides lead acetate trihydrate [Pb(OOCCH3)2·3H2O], titanium (IV) isopropoxide [Ti(OCH(CH3)2)4], and zirconium n-propoxide [ZrOC3H7)4] were used as starting materials. Thin films were deposited by spin coating onto Pt/Ti/SiO2/Si substrates. The samples were pre-heated (pyrolysis) on a calibrated hotplate over the temperature range of 200–400 °C for 10 min then firing at a temperature of 600 °C for 30 min. Randomly-oriented PZT thin films pre-heated at 400 °C for 10 min and annealed at 600 °C for 30 min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 27 μC/cm2 and a coercive field of 115 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.040, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20 nm in size.  相似文献   

13.
Bismuth ferrite (BiFeO3) is an attractive multiferroic material that shows strong ferroelectric and antiferromagnetic properties. Nevertheless, producing high-quality oriented BiFeO3 on technology-important platinized silicon substrates by low-cost solution deposition methods is still challenging. In this work, polycrystalline Mn and Ti co-doped BiFeO3 (BFO) thin films were fabricated on platinized silicon substrates by a solution deposition method. PbTiO3 nanocrystals were used as a seed layer between the electrode and the BFO thin films to induce a preferential (100) pseudocubic orientation. We show that the introduction of a PbTiO3 seed layer strongly reduces the leakage current. The films show excellent room-temperature ferroelectric properties at low frequencies (300 Hz), with epitaxial-like remanent polarization as high as 51 μC/cm2 and coercive field of 500 kV/cm.  相似文献   

14.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

15.
Ba0.8Sr0.2Ti0.9Zr0.1O3/Ni0.8Zn0.2Fe2O4(BN) and Ni0.8Zn0.2Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 (NB) composite film were deposited on Pt/Ti/SiO2/Si substrates by the sol-gel method and spin-coating method. The results show that the deposition sequences of the composite films have significant influence on the ferroelectric, ferromagnetic and magnetoelectric properties of the composite films. Two composite films possess not only good ferroelectric and ferromagnetic properties but good magnetoelectric properties as well. The NB composite film has clear interface between the ferroelectric film and ferromagnetic film and possesses greater magnetoelectric coupling effect than the BN composite film under the same Hbias. The maximum value of αE is 70.14?mV?cm?1 Oe?1 was obtained in the NB composite film when Hbias is 638?Oe.  相似文献   

16.
In this study, we investigated the impact of electrodes on the structural, crystal orientation, and electrical characteristics of lead zirconate titanate [Pb(Zr0.52Ti0.48)O3, PZT] thin films, that were deposited on Pt, Au, and LaNiO3 (LNO) electrodes through sol-gel processes. The peak voltage, that is, the voltage corresponding to the maximum switching current point, was developed to depict the novel peak-drift electric characteristics in ferroelectric thin films. It increases in the positive ferroelectric peak voltage, and decreases in the negative peak voltage with an increase in the driving voltage amplitude. Based on space-charge-limited bulk conduction, we evaluated the peak-drift phenomenon, Schottky contact and their influences on the switching current. When polarization orientation is reversed, the Schottky contact disappears at one side of the PZT/electrode, and forms at the other side synchronously. Our results indicate that the formation of a Schottky contact affects the shape of the switching curves, and its disappearance influences the magnitude of the current characteristics.  相似文献   

17.
Pb(Zr,Ti)O3 (PZT 30/70) and Mn-doped Pb(Zr,Ti)O3 (PMZT 30/70) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by a chemical solution deposition technique. The experiments found that the addition of Mn in PZT thin films greatly improves the ferroelectric properties of thin films. It is demonstrated that the Mn-doped (1 mol%) PZT showed fatigue-free characteristics at least up to 1010 switching bipolar pulse cycles under 10 V and excellent retention properties. The Mn-doped PZT thin films also exhibited well-defined hysteresis loops with a remnant polarization (Pr) of 34 μC/cm2 and a coercive field (Ec) of 100 kV/cm for the thickness of 300 nm. Dielectric constant and loss (tanδ) for Mn doped PZT thin films are 214 and 0.008, respectively. These figures compare well with or exceed the values reported previously. In this paper, the mechanism by which Mn influences on the ferroelectric properties of PZT thin films has also been discussed.  相似文献   

18.
Ba(ZrxTi1−x)O3 (BZT) thin films were deposited via sol–gel process on LaNiO3, as buffer layer, and Pt-coated silicon substrates. The BZT films were perovskite phase and showed a (1 0 0) preferred orientation dependent upon zirconium content. The grain size decreased and the microstructure became dense with increasing zirconium content. The addition of Zr to the BaTiO3 lattice decreased the grain size of the crystallized films. The temperature dependent dielectric constant revealed that the thin films have relaxor behavior and diffuse phase transition characteristics that depend on the substitution of Zr for Ti in BaTiO3. The dependence of electrical properties on film thickness has been studied, with the emphasis placed on dielectric nonlinear characteristics. Ba(Zr0.35Ti65)O3 thin films with weak temperature dependence of tunability in the temperature range from 0 to 130 °C could be attractive materials for situations in which precise control of temperature would be either impossible or too expensive.  相似文献   

19.
The polarization hysteresis loops and the dynamics of domain switching in ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT), antiferroelectric PbZrO3 (PZ) and relaxor-ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films deposited on Pt/Ti/SiO2/Si substrates were investigated under various bipolar electric fields during repetitive switching cycles. Fatigue behavior was observed in PZT thin films and was accelerated at higher bipolar electric fields. Degradation of energy storage performance observed in PZ thin films corresponds to the appearance of a ferroelectric state just under a high bipolar electric field, which could be related to the nonuniform strain buildup in some regions within bulk PZ. Meanwhile, PLZT thin films demonstrated fatigue-free in both polarization and energy storage performance and independent bipolar electric fields, which are probably related to the highly dynamic polar nanodomains. More importantly, PLZT thin films also exhibited excellent recoverable energy-storage density and energy efficiency, extracted from the polarization hysteresis loops, making them promising dielectric capacitors for energy-storage applications.  相似文献   

20.
Bilayered CoFe2O4/0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 nanocomposite films are successfully prepared on Pt/Ti/SiO2/Si substrate via simple sol-gel process. X-ray diffraction result reveals that there exists no chemical reaction or phase diffusion between the CoFe2O4 and 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 phases. The microstructure is characterized by scanning/transmission electron microscopy (STEM). The composite thin films exhibit both strong ferroelectric and ferromagnetic responses at room temperature. The maximal magnetoelectric coupling coefficient of the nanocomposite films reaches up to 25 mV/cm Oe, occurs at a lower bias magnetic field (Hdc) of 550 Oe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号