首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
GB 17820—2018《天然气》实施后,原料气气质中有机硫含量较高(大于20 mg/m3)的净化厂采用了有机硫脱除技术,以满足标准中一类气的指标要求。但从国内外有机硫脱除技术的应用情况来看,对于RSH含量高(大于30 mg/m3)的原料气,还存在对硫醇脱除率不高的问题,产品气总硫有超标的风险。为此,基于理论计算,开展了RSH脱除机理研究,揭示了硫醇与砜胺溶剂体系的反应机理,通过改善脱硫溶剂中关键组分的亲核性来提升溶剂对硫醇的化学吸收,研发出了一种新型的硫醇深度脱除溶剂。研究结果表明:(1)通过对醇胺分子结构改进,自主合成了分子结构中N原子具有强亲核性的新组分,形成了硫醇深度脱除溶剂,可促进其对硫醇的离解,提高硫醇脱除率。(2)在实验室条件下考察了不同压力、不同气液比条件下硫醇深度脱除溶剂的性能,压力低至1.5MPa,该溶剂对硫醇脱除率大于90%;气液比高达1200时,该溶剂对硫醇脱除率大95%。(3)在天然气净化厂工业应用中,在原料气硫醇含量超过300 mg/m3的条件下,经硫醇深度脱除溶剂净化后,产品气总硫低于5 mg/m3,硫醇脱除率超过99%。结论认为,该技术可应用于硫醇含量...  相似文献   

2.
对环丁砜甲基二乙醇胺溶液脱除高酸性天然气中H2S、CO2和有机硫的性能进行了系统的研究。获取了该溶液在不同砜胺配比、不同填料高度、不同贫液入塔温度、不同吸收压力、不同气液比等条件下的吸收性能数据。明确了溶液中甲基二乙醇胺与环丁砜配比变化、填料高度变化、压力变化、贫液入塔温度变化、气液比变化对溶液脱除有机硫的影响规律。本文还研究了几种组成的环丁砜-甲基二乙醇胺溶液在模拟的川东北铁山坡气田气质条件下的吸收性能,并根据研究结果,对拟建中的铁山坡高含硫天然气净化厂的脱硫溶剂组成提出了建议。  相似文献   

3.
陈赓良  缪明富  马卫 《天然气工业》2007,27(10):120-122
天然气中有机硫化合物脱除技术的研发和选择是川东北地区高含硫气田开发的关键技术之一。为此, 综合了分析国内外天然气中有机硫化合物脱除工艺技术。目前已开发出的多种类型工艺中, 应用最为广泛的是以Sufinol法为代表的物理/化学混合溶剂吸收法。中国石油西南油气田公司天然气研究院最近也针对罗家寨、渡口河等高含硫气田所产天然气中同时含有一定量有机硫化合物的情况,开发成功了一种新型物理/化学混合溶剂(CT8 20)。提出原料气中有机硫含量不太高且又以COS为主时,可以采用混合胺溶剂;结合脱除有机硫的要求,高含硫天然气净化工艺流程也有很多改进,其中最重要的是组合/串级流程;建议西南油气田公司加紧开发相关有机硫脱除工艺技术,包括在还原-吸收法尾气处理工艺中应用物理/化学混合溶剂进行选吸脱硫的技术, 探索适用于脱除原料气中有机硫的空间位阻胺、与天然气中有机硫水解(转化)有关的催化剂研制、应用于物理/化学混合溶剂脱硫(及有机硫化合物)的新型物理溶剂。  相似文献   

4.
该法用于气体选择性脱除H_2S.原料气在填料吸收塔内用贫碳酸钾水溶液吸收.吸收时只有少量CO_2被同时脱除,而H_2S几乎全部被吸收.吸收富液经贫富液换热器换热后进入解吸塔,于真空条件下解吸放出含硫气体.解吸介质为重沸器产生的水蒸气,重沸点热源是原料气的显热.由解吸塔顶排出的酸性气体经冷凝冷却后入分离罐,气体由真空泵抽送至Claus硫回收或硫酸生产装置作原料;冷凝液由泵送回解吸塔顶.解吸塔底贫液经贫/富液换热器换热后再冷却返回吸收塔作吸收液.  相似文献   

5.
为了解决某天然气净化厂天然气硫、碳含量超标的问题,采用HYSYS模拟软件,对吸收塔的胺液进料量、吸收塔塔板数、胺液进料方式及再生塔的塔板数进行模拟。结果表明:在脱硫脱碳过程中,混合胺溶液m(H_2O)∶m(甲基二乙醇胺)∶m(二乙醇胺)为52∶45∶3最佳;吸收塔最优操作条件为:贫胺液总进料量为1 600 kmol/h,吸收塔塔板数为12块,贫胺液Ⅰ由吸收塔第1块塔板进料,贫胺液Ⅱ由吸收塔第5块塔板进料,m(贫胺液Ⅰ)/m(贫胺液Ⅱ)为7∶3时,吸收过程具有良好的脱酸气效果,天然气中H_2S的质量浓度为2 mg/m~3,CO_2的体积分数为2.32%。再生塔宜选用14或15块塔板。  相似文献   

6.
利用φ76mm×6mm填料吸收塔试验装置,于川东天然气净化总厂(简称卧引)进行了甲基二乙醇胺(MDEA)-环丁砜(SF)-水溶液在5.5MPa压力下从该厂原料天然气(含H_2S2.2~3.0%,CO_21.0~1.2%,有机硫400~600mg/m~3)中选择性脱除硫化氢与有机硫试验。考查了溶液组成、气液比、贫液温度等项因素对净化效果与选择性的影响,选取了优化操作参数,确认了以此新砜胺溶液取代该厂脱硫装置传统二异丙醇胺(DIPA)-环丁砜-水溶液的可能性及其预期经济效益。  相似文献   

7.
基于N-甲基二乙醇胺(MDEA)脱碳工业装置,考察了贫胺液MDEA浓度、吸收塔贫胺液与合成气的质量比、吸收塔压力、再生塔蒸汽用量与贫胺液循环量的质量比等工艺条件对CO2脱除效果的影响。结果表明,随着上述各工艺参数的增大,净化气中CO2的含量均呈先快后慢的降低趋势,MDEA溶液对CO2的吸收性能明显增强。在吸收塔压力为3.1 MPa,温度为45℃,贫胺液中MDEA的质量分数为30%,贫胺液循环量为75 t/h,合成气的进料量为17 t/h,再生塔蒸汽用量与贫胺液循环量的质量比为0.08的优化条件下,合成气中CO2组分的摩尔分数由10.22%可降至0.01%,脱碳率大于99.5%。  相似文献   

8.
针对GB 17820-2018《天然气》对商品气中总硫含量的严格要求,通过室内实验,对多种类型的有机硫脱除溶剂配方进行评价,筛选出一种具有较高有机硫脱除性能和一定脱硫选择性的物理-化学溶剂。考察了气液体积比、吸收压力及填料高度等工艺条件对该溶剂吸收性能的影响,同时也考察了再生温度、闪蒸气量和溶液性能稳定性等关键指标,明确了碳硫比对选择性的影响。在原料气中CH 3SH和COS质量浓度均为30 mg/m^3且碳硫比大于5.0的条件下,新溶剂有机硫脱除率最高可达86.87%,CO 2脱除率为76.42%,可更好地保障商品气中总硫指标,并降低商品气量损失。  相似文献   

9.
砜胺法作为脱除天然气中有机硫最常用的工艺,在国内外取得了较为广泛的应用.然而目前对于这一工艺的机理研究仍较为缺乏,动力学及热力学基础数据缺失,导致难以准确预测其工业应用效果.针对这一问题,对砜胺体系的室内实验和现场应用数据进行了分析,从反应机理、气液平衡、传质动力学等方面,研究了影响有机硫在该体系吸收的因素.并尝试将这...  相似文献   

10.
在总浓度为2 mol/L的条件下,运用小型反应釜,采用恒压吸收法和恒容吸收法,对以MDEA为主体、DGA与AMP为添加剂的复配胺液进行不同物质的量比下选择性吸收H_2S性能的实验研究。通过分析气相浓度、吸收速率、酸气脱除率及选择性因子,优选出不同复配胺液在此浓度下选择性脱硫的最优配比。实验结果表明:2mol/L MDEA+DGA复配胺液在物质的量比为10∶3时,对原料气中H_2S的吸收速率、脱除率均较高,对CO_2的吸收速率、脱除率均较低,选择性因子最大,为该复配胺液的最优配比;2mol/L MDEA+AMP复配胺液在物质的量比为10∶3时,对原料气中H_2S的吸收速率、脱除率均较高,对CO_2的吸收速率、脱除率均较低,选择性因子最大,为该复配胺液的最优配比。  相似文献   

11.
天然气脱硫脱碳方法的研究进展   总被引:2,自引:2,他引:2  
陈颖  杨鹤  梁宏宝  张静伟 《石油化工》2011,40(5):565-570
综述了甲基二乙醇胺(MDEA)法、砜胺法、LO-CAT法及CT8-5法等天然气脱硫脱碳方法的应用状况,对脱硫脱碳方法的适用范围、溶剂的变质过程、脱除效果进行了比较和分析,并展望了天然气脱硫脱碳方法未来的发展方向。通过对比分析得出,当原料气压力较高且硫含量高时,适宜采用LO-CAT法处理;若原料气中硫含量低时,应采用砜胺Ⅲ法;当原料气压力较低时,采用MDEA法和CT8-5法均适宜,但使用CT8-5法时溶剂更稳定,不易变质。若需要从原料气中选择性脱除H2S和有机硫、可适当保留CO2的工况,应选用砜胺Ⅲ法。  相似文献   

12.
目的①提高胺液选择性吸收效果,降低装置能耗;②提升液硫产品品质,降低排放烟气中SO_(2)质量浓度;③实现催化剂的国产化应用。方法以数据模拟为指导,结合现场试验,优化装置运行参数,拆除2层吸收塔塔盘。结果产品气收率提升1.3个百分点以上,胺液循环泵电机电耗降低12.46%,胺液再生蒸汽降低11%。通过实施液硫鼓泡脱气、液硫池废气入克劳斯炉及热氮吹硫技术改造,液硫产品品质稳定达标,排放烟气中SO_(2)质量浓度<200 mg/m^(3)。通过开发应用国产水解、制硫、加氢催化剂,均取得了良好的应用效果,具备推广应用价值。结论通过系列生产优化、技术改造、催化剂国产化应用,推动了高含硫气田的进一步发展。  相似文献   

13.
为了提高MDEA脱硫溶剂对天然气中硫醇的脱除率,尝试了以二甲基亚砜、环丁砜、N-甲基吡咯烷酮这三种强极性非质子物理溶剂为复配成分的MDEA溶剂。在研究中选取了甲硫醇及乙硫醇两种典型的有机硫为研究对象,使用静态气-液两相平衡釜为工具,以带有火焰光度检测器(FPD)的气相色谱为检测仪器,考察和选取了吸收温度、气液比这两个重要的吸收参数,评价了三种复配溶剂及单纯MDEA溶剂对目标有机硫及硫化氢的脱除能力。结果表明,二甲基亚砜、环丁砜、N-甲基吡咯烷酮这三种强极性非质子溶剂均能显著提高溶剂对甲硫醇、乙硫醇的脱除率,但随着物理溶剂使用量的增加溶剂对硫化氢的脱除率呈下降趋势。  相似文献   

14.
高含硫天然气净化新工艺技术在普光气田的应用   总被引:3,自引:0,他引:3  
普光气田的天然气具有高含H2S和含CO2及有机硫的特点,天然气净化难度大。为满足高含硫天然气净化的要求,普光天然气净化厂采用了MDEA法脱硫脱碳、TEG法脱水、常规Claus硫磺回收、加氢还原吸收尾气处理的天然气净化工艺路线。同时,在国内首次应用了气相固定床水解脱除羰基硫(COS)、中间胺液冷却、MAGR液硫脱气等国际先进的天然气净化新工艺和专利技术,通过不断地摸索及优化工艺参数,解决了原料气脱除有机硫、CO2选择性吸收、液硫深度脱除H2S等技术难题;还应用了溶剂串级吸收和联合再生工艺、能量回收利用等多项技术,通过优化调整胺液循环量、降低能耗等手段,降低了操作费用。高含硫天然气净化新工艺技术应用于普光气田后,净化装置运行稳定,净化气质量超过设计要求,达到了国家标准一类气的指标。  相似文献   

15.
为了优化利用炼油厂焦化干气,提高焦化干气中有机硫的脱除水平,以具有良好有机硫脱除性能的UDS高效脱硫溶剂对焦化干气中硫化物进行深度脱除,对比考察了UDS和MDEA溶剂吸收脱除焦化干气中有机硫和H2S的性能,优化了UDS溶剂的吸收工艺条件,并对UDS溶剂吸收脱除焦化干气中有机硫的机理进行了分析。结果表明,在常压,UDS质量分数为50%,气液比为165,吸收操作温度38℃左右的优化的工艺条件下,净化气中H2s和有机硫浓度分别可降至1mg/m^3和10.5mg/m^3,有机硫脱除率可达99.29%,较MDEA溶剂高出约58个百分点。与MDEA溶剂相比,UDS溶剂在脱除焦化干气中有机硫时表现出明显的优势。  相似文献   

16.
用物理—化学混合溶剂选择性脱除硫化氢与有机硫   总被引:2,自引:1,他引:1  
在φ76×6的填料吸收塔试验装置上,采用甲基二乙醇胺-环丁砜-水溶液对高含硫天然气(H2S:7.1×10^-2φ,CO2:5.1×10^-2φ,有机硫:290mg/m^3)进行了3.3MPa压力下的选择性脱除硫化氢与有机硫试验,考查了溶液组成、吸收温度、气液比等对净化气中硫化氢含量、CO2共吸收率与有机硫脱除率的影响。在适宜的操作条件下,净化气中硫化氢含量稳定低于200mg/m^3,有机硫低于60mg/m^3,CO2共吸收率约为60×10^-2。  相似文献   

17.
在50℃下,用50%二甘醇胺水溶液从气体中吸收硫醇.在二甘醇胺水溶液中硫醇类浓度为0.5g/L时,气体中的硫醇浓度从500降至20g/m~3(96%脱除率),但是当二甘醇胺水溶液含0.85g/L时,它降到30g/m~3.进一步增加二甘醇胺水溶液中硫醇浓度使达到1.57g/L时,则吸收率降低,气体中的硫醇含量增加达75g/m~3.  相似文献   

18.
该法用于从气流中脱除 CO_2、H_2S 和 COS。净化气含 H_2S<4ppm、含 CO_250ppm—2%。回收的 CO_2不含 H_S,适合食品或饮料业应用。吸收剂是一抑制腐蚀的钾盐溶液,内含一种高活性、稳定、无毒的催化剂。吸收设备为填料塔或板式塔。对净化气纯度要求高时,可采用两段吸收。吸收了酸性杂质的富液经闪蒸进入再生塔顶部,由塔底再沸器加热产生的水蒸气汽提脱除 CO_2和 H_2S。再生后的贫液泵回吸收塔。  相似文献   

19.
针对塔河油田某天然气处理装置湿净化气中H2 S含量及液化气中总硫含量超标、C3+收率低等问题,通过开展原料气常压吸收实验,创新应用油田伴生气H2 S及有机硫脱除一体化工艺,即采用U DS复合胺液在同一套装置中同时脱除H2 S及有机硫,并通过新增原料气丙烷冷却器及高效旋风分离器、优化M DEA再生系统参数控制逻辑等措施,...  相似文献   

20.
为脱除天然气重整中变气中的CO_2,使其含量低于0.0005%(物质的量分数,下同),从而达到纯氢技术指标,选用质量分数为35%MDEA+3.5%PZ+61.5%H_2O的贫胺液为吸收液,采用Aspen HYSYS软件搭建了脱碳工艺流程并建立了系统能耗计算模型。对吸收塔吸收压力、贫胺液循环流量和富胺液进再生塔温度三个关键参数进行了敏感度分析;并以系统总能耗最小为目标,利用遗传算法对关键参数进行了优化。结果表明:所建流程氢气回收率可至97%以上,且CO_2捕集率及纯度均达到99%。优化后,系统总能耗降低了2.4%,脱除单位CO_2能耗降低了4.14%。此外,处理CO_2含量分别为20%、25%、30%、35%的中变气,优化计算所得脱除单位CO_2能耗分别为21.54 GJ/t、19.71 GJ/t、17.84 GJ/t、15.71 GJ/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号