首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the in silico biofilm production ability of Staphylococcus aureus strains isolated from milking parlor environments on dairy farms from São Paulo, Brazil. The Staph. aureus isolates were obtained from 849 samples collected on dairy farms, as follows: milk from individual cows with subclinical mastitis or history of the disease (n = 220); milk from bulk tank (n = 120); surfaces of milking machines and utensils (n = 389); and milk handlers (n = 120). Thirty-one Staph. aureus isolates were obtained and categorized as pulsotypes by pulsed-field gel electrophoresis and submitted to assays for biofilm formation on polystyrene, stainless steel, rubber, and silicone surfaces. Fourteen (45.2%) pulsotypes were considered producers of biofilm on the polystyrene microplate assay, whereas 13 (41.9%) and 12 (38.7%) pulsotypes were biofilm producers on stainless steel and rubber, respectively. None of the pulsotypes evaluated produced biofilms on silicone. Approximately 45% of Staph. aureus pulsotypes isolated from different sources on dairy farms showed the ability to produce biofilms in at least one assay, indicating possible persistence of this pathogen in the milking environment. The potential involvement of Staph. aureus in subclinical mastitis cases and its occurrence in milk for human consumption emphasize the need to improve hygiene practices to prevent biofilm formation on the farms studied.  相似文献   

2.
Control of psychrotolerant endospore-forming spoilage bacteria, particularly Bacillus and Paenibacillus spp., is economically important to the dairy industry. These microbes form endospores that can survive high-temperature, short-time pasteurization; hence, their presence in raw milk represents a major potential cause of milk spoilage. A previously developed culture-dependent selection strategy and an rpoB sequence-based subtyping method were applied to bacterial isolates obtained from environmental samples collected on a New York State dairy farm. A total of 54 different rpoB allelic types putatively identified as Bacillus (75% of isolates), Paenibacillus (24%), and Sporosarcina spp. (1%) were identified among 93 isolates. Assembly of a broader data set, including 93 dairy farm isolates, 57 raw milk tank truck isolates, 138 dairy plant storage silo isolates, and 336 pasteurized milk isolates, identified a total of 154 rpoB allelic types, representing an extensive diversity of Bacillus and Paenibacillus spp. Our molecular subtype data clearly showed that certain endospore-forming bacterial subtypes are present in the dairy farm environment as well as in the processing plant. The potential for entry of these ubiquitous heat-resistant spoilage organisms into milk production and processing systems, from the dairy farm to the processing plant, represents a considerable challenge that will require a comprehensive farm-to-table approach to fluid milk quality.  相似文献   

3.
Three Lactococcus lactis ssp. cremoris isolates from refrigerated bulk raw milk were cultured separately and in association with a known psychrotrophic dairy Pseudomonas fluorescens strain, in skim UHT milk for 72 h at 7°C, to determine mutual influences in both the planktonic and biofilm phases. Two levels of inoculum of each culture partner were combined. Protocooperation and commensalism cases were found, all of them in the biofilm phase. Type and intensity of the interactions depended on Lactococcus strain and on the cell density of each partner. Maximum enhancement of attachment was observed to be approximately 100-fold for P. fluorescens and 20,000-fold for one of the L. lactis strains. Confocal scanning laser microscopy images show compact masses of Pseudomonas trapping lactococci cells in cooperative biofilms.  相似文献   

4.
Dairy cow mastitis associated with microalgae of the genus Prototheca has been reported worldwide. This alga is extremely resistant to most antimicrobials commonly used in mastitis therapy. In milk processing, different thermal treatments are generally efficient at inactivating and eliminating microorganisms. Until recently, no reports on Prototheca blaschkeae susceptibility to heat treatment have been described. Thus, considering the potential zoonotic risk that Prototheca may represent, the objective of this study was to test the susceptibility of P. blaschkeae field isolates retrieved from bovine mastitis to different temperature/time ratios that are generally used in the milk processing industry: 62°C/15 min and 30 min; 70°C/20 s, 15 min, and 30 min; 75°C/20 s; 90°C/1 s; and 100°C/1 s. The results showed a growth reduction of all isolates after the heat treatments, but only at 100°C was a total growth inhibition observed.  相似文献   

5.
Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12 min (to detect sporeformers) and (2) 100°C for 30 min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders.  相似文献   

6.
In food processing lines or in complex equipment such as pumps or valves, microorganisms are exposed to varying hydrodynamic conditions caused by the flow of liquid food, and biofilms are thus grown under a wide distribution of local hydrodynamic strengths. Using an industrially relevant strain of Candida krusei, we demonstrated that biofilms formed on stainless steel for 4 days at Reynolds (Re) numbers ranging from 294,000 to 1.2 × 106 proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in an extracellular matrix and biofilm formation increases when increasing Reynolds number and time. In all growth phases, the morphology of C. krusei biofilm revealed the influence of hydrodynamic drag. Indeed, we study the effect of cleaning and sanitation procedure in the control of turbulent flow-generated biofilm. This procedure involves alkali (NaOH 0.5%) and sodium hypochlorite (500 ppm). In terms of total biofilm mass, removal decreases with increasing biofilm age. The largest reduction post-treatment (between 57% and 62%) was observed, to all Reynolds numbers, on 24 and 48 h-old biofilms. Removal was between 39% and 46% on 72 h-old biofilms and was close to 30% for all Reynolds numbers on 96 h-old biofilm.  相似文献   

7.
A modular process risk model has been constructed that describes the manufacture of dairy dessert products and hazards that arise from non-proteolytic Clostridium botulinum. The model describes batch manufacture and consumer storage of a family size generic dairy dessert but includes a realistic quantification that could apply to a specific food product. The dairy dessert sector is an expanding part of the UK market. The model includes modules that describe spore loads in raw materials, spore inactivation during thermal processing, volume partition and the population kinetics for non-proteolytic C. botulinum during sequential isothermal storage regimes. Where possible elements of uncertainty and variability are identified explicitly. The model is constructed as a belief network from published data and expert opinions. The model provides marginal probabilities, and associated sensitivities, for a range of endpoint measures centred on the toxicity of a single retail unit after an extended period of storage. The decimal reduction time for non-proteolytic C. botulinum spore populations at the highest (hold) temperature of the primary thermal process and the highest temperature experienced during poorly controlled (consumer) storage are dominant factors determining risks. Priorities for additional information to support risk assessments have been identified.  相似文献   

8.
The contamination of raw milk with Bacillus cereus spores was studied during the indoor confinement of dairy cattle. The occurrence of spores in fresh and used bedding material, air samples, feed, feces, and the rinse water from milking equipment was compared with the spore level in bulk tank milk on 2 farms, one of which had 2 different housing systems. A less extensive study was carried out on an additional 5 farms. High spore concentrations of >100 spores/L in the raw milk were found on 4 of the farms. The number of spores found in the feed, feces, and air was too small to be of importance for milk contamination. Elevated spore contents in the rinse water from the milking equipment (up to 322 spores/L) were observed and large numbers of spores were found in the used bedding material, especially in free stalls with >5 cm deep sawdust beds. At most, 87,000 spores/g were found in used sawdust bedding. A positive correlation was found between the spore content in used bedding material and milk (r = 0.72). Comparison of the genetic fingerprints obtained by the random amplified polymorphic DNA PCR of isolates of B. cereus from the different sources indicated that used bedding material was the major source of contamination. A separate feeding experiment in which cows were experimentally fed B. cereus spores showed a positive relationship between the number of spores in the feed and feces and in the feces and milk (r = 0.78). The results showed that contaminated feed could be a significant source of spore contamination of raw milk if the number of spores excreted in the feces exceeded 100,000/g.  相似文献   

9.
The objective of this study was to monitor the viability during storage of Lactobacillus acidophilus LA-5 (A), Bifidobacterium animalis ssp. lactis BB-12 (B), and Streptococcus thermophilus CHCC 742/2130 (T) in probiotic cultured dairy foods made from pasteurized camel, cow, goat, and sheep milks fermented by an ABT-type culture. The products manufactured were stored at 4°C for 42 d. Microbiological analyses were performed at weekly intervals. Streptococcus thermophilus CHCC 742/2130 was the most numerous culture component in all 4 products both at the beginning and at the end of storage. The viable counts of streptococci showed no significant decline in fermented camel milk throughout the entire storage period. The initial numbers of Lb. acidophilus LA-5 were over 2 orders of magnitude lower than those of Strep. thermophilus CHCC 742/2130. With the progress of time, a slow and constant decrease was observed in lactobacilli counts; however, the final viability percentages of this organism did not differ significantly in the probiotic fermented milks tested. The cultured dairy foods made from cow, sheep, and goat milks had comparable B. animalis ssp. lactis BB-12 counts on d 0, exceeding by approximately 0.5 log10 cycle those in the camel milk-based product. No significant losses occurred in viability of bifidobacteria in fermented camel, cow, and sheep milks during 6 wk of refrigerated storage. In conclusion, all 4 varieties of milk proved to be suitable raw materials for the manufacture of ABT-type fermented dairy products that were microbiologically safe and beneficial for human consumption. It was suggested that milk from small ruminants be increasingly used to produce probiotic fermented dairy foods. The development of camel milk-based probiotic cultured milks appears to be even more promising because new markets could thus be conquered. It must be emphasized, however, that further microbiological and sensory studies, technology development activities, and market research are needed before such food products can be successfully commercialized.  相似文献   

10.
We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation, and biofilm composition was achieved by addition of manganese sulfate and/or glucose to the BHI medium. Composition analyses of the mixed species biofilms using plate counts and fluorescence microscopy with dual fluorophores showed that mixed species biofilms were formed in BHI (total count, 8-9 log10 cfu/well) and that they contained 1-2 log10 cfu/well more L. monocytogenes than L. plantarum cells. Addition of manganese sulfate resulted in equal numbers of both species (total count, 8 log10 cfu/well) in the mixed species biofilm, while manganese sulfate in combination with glucose, resulted in 1-2 log10 more L. plantarum than L. monocytogenes cells (total count, 9 log10 cfu/well). Corresponding single species biofilms of L. monocytogenes and L. plantarum contained up to 9 log10 cfu/well. Subsequent disinfection treatments showed mixed species biofilms to be more resistant to treatments with the selected disinfectants. In BHI with additional manganese sulfate, both L. monocytogenes strains and L. plantarum grown in the mixed species biofilm showed less than 2 log10 cfu/well inactivation after exposure for 15 min to 100 μg/ml benzalkonium chloride, while single species biofilms of both L. monocytogenes strains showed 4.5 log10 cfu/well inactivation and single species biofilms of L. plantarum showed 3.3 log10 cfu/well inactivation. Our results indicate that L. monocytogenes and L. plantarum mixed species biofilms can be more resistant to disinfection treatments than single species biofilms.  相似文献   

11.
An experiment was conducted in vitro to determine whether the addition of saponin-containing Yucca schidigera or Quillaja saponaria reduces methane production without impairing ruminal fermentation or fiber digestion. A slightly lower dose of saponin was then fed to lactating dairy cows to evaluate effects on ruminal fermentation, methane production, total-tract nutrient digestibility, and milk production and composition. A 24-h batch culture in vitro incubation was conducted in a completely randomized design with a control (no additive, CON) and 3 doses of either saponin source [15, 30, and 45 g/kg of substrate dry matter (DM)] using buffered ruminal fluid from 3 dairy cows. The in vivo study was conducted as a crossover design with 2 groups of cows, 3 treatments, and three 28-d periods. Six ruminally cannulated cows were used in group 1 and 6 intact cows in group 2 (627 ± 55 kg of body weight and 155 ± 28 d in milk). The treatments were 1) early lactation total mixed ration, no additive (control; CON); 2) CON diet supplemented with whole-plant Y. schidigera powder at 10 g/kg of DM (YS); and 3) CON diet supplemented with whole-plant Q. saponaria powder at 10 g/kg of DM (QS). Methane production was measured in environmental chambers and with the sulfur hexafluoride (SF6) tracer technique. In vitro, increasing levels of both saponin sources decreased methane concentration in the headspace and increased the proportion of propionate in the buffered rumen fluid. Concentration of ammonia-N, acetate proportion, and the acetate:propionate ratio in the buffered rumen fluid as well as 24-h digestible neutral detergent fiber were reduced compared with the CON treatment. Medium and high saponin levels decreased DM digestibility compared with the CON treatment. A lower feeding rate of both saponin sources (10 g/kg of DM) was used in vivo in an attempt to avoid potentially negative effects of higher saponin levels on feed digestibility. Feeding saponin did not affect milk production, total-tract nutrient digestibility, rumen fermentation, or methane production. However, DM intake was greater for cows fed YS and QS than for CON cows, with a tendency for greater DM intake for cows fed YS compared with those fed QS. Consequently, efficiency of milk production (kg of milk/kg of DM intake) was lower for cows fed saponin compared with controls. The results show that although saponin from Y. schidigera and Q. saponaria lowered methane production in vitro, the reduction was largely due to reduced ruminal fermentation and feed digestion. Feeding a lower dose of saponin to lactating dairy cows avoided potentially negative effects on ruminal fermentation and feed digestion, but methane production was not reduced. Lower efficiency of milk production of cows fed saponin, and potential reductions in feed digestion at high supplementation rates may make saponin supplements an unattractive option for lowering methane production in vivo.  相似文献   

12.
The objectives of this study were to determine the concentration of endotoxin, determine 20 water quality variables, and identify and enumerate fungal and bacterial pathogens from United States southern High Plains dairy lagoons and control lakes during summer and winter. Water samples were collected in triplicate from the north, south, east, and west quadrants of each body of water. The mean (± SEM) winter dairy lagoon endotoxin concentration was significantly higher (9,678 ± 1,834 ng/mL) than the summer concentration (3,220 ± 810 ng/mL). The mean endotoxin concentration of the 2 control lakes (summer: 58.1 ± 8.8 ng/mL; winter: 38.6 ± 4.2 ng/mL) was significantly less than that of the dairy lagoons. Two hundred-one Salmonella enterica spp. isolates were identified, 7 serovars were recovered from the dairy lagoons, and 259 Salmonella ssp. were identified from 5 other dairy locations (milk barn, ditch effluent, settling basin, feed alley pad flush, and center pivots). Twenty-eight Salmonella spp. were identified from center pivot water. Escherichia coli O157:H7 pathogens were isolated from other dairy locations but not from lagoons. Neither Salmonella spp. nor E. coli O157:H7 were identified from control lakes. Enterobacteriaceae opportunistic pathogens were isolated from both dairies and control lakes. Important mesophilic and thermophilic catabolic (to manure biosolids) fungal isolates were identified from dairy effluent locations, but no thermophilic fungal isolates were cultured from the control lakes. Adequate curing of green forage following center pivot irrigation is important to kill lagoon water enteric pathogens, even though the lagoon water is mixed with fresh water. Recirculating lagoon water to flush the feed alley pad, where cows stand while eating, to remove manure and using lagoon water to abate dairy dust in loafing pens and unimproved dairy roads is inconsistent with good environmental practice management.  相似文献   

13.
In a year-long survey on 24 Dutch farms, Bacillus cereus spore concentrations were measured in farm tank milk (FTM), feces, bedding material, mixed grass and corn silage, and soil from the pasture. The aim of this study was to determine, in practice, factors affecting the concentration of B. cereus spores in FTM throughout the year. In addition, the results of the survey were used in combination with a previously published modeling study to determine requirements for a strategy to control B. cereus spore concentrations in FTM below the MSL of 3 log10 spores/L. The B. cereus spore concentration in FTM was 1.2 ± 0.05 log10 spores/L and in none of samples was the concentration above the MSL. The spore concentration in soil (4.9 ± 0.04 log10 spores/g) was more than 100-fold higher than the concentration in feces (2.2 ± 0.05 log10 spores/g), bedding material (2.8 ± 0.07 log10 spores/g), and mixed silage (2.4 ± 0.07 log10 spores/g). The spore concentration in FTM increased between July and September compared with the rest of the year (0.5 ± 0.02 log10 spores/L difference). In this period, comparable increases of the concentrations in feces (0.4 ± 0.03 log10 spores/g), bedding material (0.5 ± 0.05 log10 spores/g), and mixed silage (0.4 ± 0.05 log10 spores/g) were found. The increased B. cereus spore concentration in FTM was not related to the grazing of cows. Significant correlations were found between the spore concentrations in FTM and feces (r = 0.51) and in feces and mixed silage (r = 0.43) when the cows grazed. The increased concentrations during summer could be explained by an increased growth of B. cereus due to the higher temperatures. We concluded that year-round B. cereus spores were predominantly transmitted from feeds, via feces, to FTM. Farmers should take measures that minimize the transmission of spores via this route by ensuring low initial contamination levels in the feeds (<3 log10 spores/g) and by preventing growth of B. cereus in the farm environment. In addition, because of the extremely high B. cereus spore concentrations in soil, the contamination of teats with soil needs to be prevented.  相似文献   

14.
Some strains of sporeforming bacteria (e.g., Bacillus spp. and Paenibacillus spp.) can survive pasteurization and subsequently grow at refrigeration temperatures, causing pasteurized fluid milk spoilage. To identify farm management practices associated with different levels of sporeformers in raw milk, a bulk tank sample was obtained from and a management and herd health questionnaire was administered to 99 New York State dairy farms. Milk samples were spore pasteurized [80°C (176°F) for 12 min] and subsequently analyzed for most-probable number and for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) at 7, 14, and 21 d after SP. Management practices were analyzed for association with sporeformer counts and bulk tank somatic cell counts. Sixty-two farms had high sporeformer growth (≥3 log cfu/mL at any day after SP), with an average sporeformer count of 5.20 ± 1.41 mean log10 cfu/mL at 21 d after SP. Thirty-seven farms had low sporeformer numbers (<3 log cfu/mL for all days after SP), with an average sporeformer count of 0.75 ± 0.94 mean log10 cfu/mL at 21 d after SP. Farms with >25% of cows with dirty udders in the milking parlor were 3.15 times more likely to be in the high category than farms with ≤10% of milking cows with dirty udders. Farms with <200 cows were 3.61 times more likely to be in the high category than farms with ≥200 cows. Management practices significantly associated with increased bulk tank somatic cell count were a lack of use of the California mastitis test at freshening and >25% of cows with dirty udders observed in the milking parlor. Changes in management practices associated with cow cleanliness may directly ensure longer shelf life and higher quality of pasteurized fluid milk.  相似文献   

15.
The presence of psychrotolerant Bacillus species and related spore formers (e.g., Paenibacillus spp.) in milk has emerged as a key biological obstacle in extending the shelf life of high-temperature, short-time pasteurized fluid milk beyond 14 d. A recently developed rpoB DNA sequence-based subtyping method was applied to characterize spoilage bacteria present in raw milk supplies for 2 processing plants, and to assess transmission of these organisms into pasteurized products. Thirty-nine raw milk samples and 11 pasteurized product samples were collected to represent the processing continuum from incoming truck loads of raw milk to packaged products. Milk samples were held at 6°C for up to 16 d and plated for bacterial enumeration at various times throughout storage. Among the 88 bacterial isolates characterized, a total of 31 rpoB allelic types representing Bacillus and Paenibacillus spp. were identified, including 5 allelic types found in both raw milk and finished product samples. The presence of the same bacterial subtypes in raw and commercially pasteurized milk samples suggests that the raw milk supply represents an important source of these spoilage bacteria. Extension of the shelf life of high-temperature, short-time pasteurized fluid milk products will require elimination of these organisms from milk-processing systems.  相似文献   

16.
The occurrence of spore-forming bacteria in powdered milk is of concern to the dairy industry due to potential deleterious effects including those resulting from proteolytic and lipolytic activities. Twenty-two powdered milk samples representative of spring and summer production obtained from Uruguayan retail stores were analyzed for type and number of thermophilic and spore-forming bacterial species. Bacillus licheniformis isolates were found to be the most prominent milk powder contaminant followed by Anoxybacillus flavithermus representing 71.5 to 84% of the total microflora. Geobacillus stearothermophilus, however, was not found. B. licheniformis strains F and G were both found in this study but strain F was the prevalent isolate representing 98.9% of the total isolates of this species. A. flavithermus isolates corresponded to strain C in accordance with 16S rRNA gene sequence analysis, however, in contrast with other reports, the RAPD profiles showed three characteristic bands at approximately 650, 1000 and 1650 bp, but lacking a band at 1250 bp. A third group of isolates was identified corresponding to members of a Bacillus subtilis group and Bacillus megaterium. Isolates designated B. licheniformis, A. flavithermus, B. megaterium and the B. subtilis group represented 89.1 to 93.6% of those analyzed, and depended on previous heat treatment and incubation temperatures of the plates. The remaining isolates were Bacillus pumilus and unidentified spore-formers.  相似文献   

17.
Angiotensin I-converting enzyme inhibitory (ACEI) activity was evaluated and compared in <3 KDa water-soluble extracts (WSE) isolated from milk fermented by wild and commercial starter culture Lactococcus lactis strains after 48 h of incubation. The highest ACEI activities were found in WSE from milk inoculated with wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures. On the other hand, the lowest ACEI activities were found in WSE from milk inoculated with wild strains isolated from vegetables. Moreover, the IC50 values (concentration that inhibits 50% activity) of WSE from artisanal dairy products were the lowest, indicating that these fractions were the most effective in inhibiting 50% of ACE activity. In fact, a strain isolated from artisanal cheese presented the lowest IC50 (13 μg/mL). Thus, it appears that wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures showed good potential for the production of fermented dairy products with ACEI properties.  相似文献   

18.
Bacilli and clostridia share the characteristic of forming metabolically inactive endospores. Spores are highly resistant to adverse environmental conditions including heat, and their ubiquitous presence in nature makes them inevitable contaminants of foods and food ingredients. Spores can germinate under favourable conditions, and the following outgrowth can lead to food spoilage and foodborne illness. Germination of spores has been best studied in Bacillus species, but the process of spore germination is less well understood in anaerobic clostridia. This paper describes a genome mining approach focusing on the genes related to spore germination of clostridia. To this end, 12 representative sequenced Bacillus genomes and 24 Clostridium genomes were analyzed for the distribution of known and putative germination-related genes and their homologues. Overall, the number of ger operons encoding germinant receptors is lower in clostridia than in bacilli, and some Clostridium species are predicted to produce cortex-lytic enzymes that are different from the ones encountered in bacilli. The in silico germination model constructed for clostridia was linked to recently obtained experimental data for selected germination determinants, mainly in Clostridium perfringens. Similarities and differences between germination mechanisms of bacilli and clostridia will be discussed.  相似文献   

19.
The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72°C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60°C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2°C) and then held at 6°C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9°C were lower than in milk processed at 85.2°C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can exceed Pasteurized Milk Ordinance limits in pasteurized, refrigerated milk.  相似文献   

20.
Mycobacterium avium ssp. paratuberculosis (MAP) is shed into the milk of cattle affected by Johne’s disease and, therefore, is a route of transmission for infection in young stock in dairy herds. The objective of this study was to validate a decontamination and culture protocol for the recovery of MAP from individual bovine milk samples from known infected herds. Decontamination of milk samples (n = 17) with either 0.75% hexadecylpyridinium chloride for 5 h or N-acetyl-l-cysteine-1.5% sodium hydroxide (NALC-1.5% NaOH) for 15 min before culture in BACTEC 12B (Becton Dickinson, Franklin, NJ), para-JEM [Thermo Fisher Scientific (TREK Diagnostic Systems, Inc.), Cleveland, OH], and Herrold’s egg yolk (HEY; Becton Dickinson) media was compared. Treatment with NALC-NaOH resulted in a lower percentage (6%) of contaminated samples than did treatment with hexadecylpyridinium chloride (47%), regardless of culture medium. The decontamination protocol (NALC-1.5% NaOH) was then applied to milk samples (n = 144) collected from cows at 7 US dairies. Recovery of viable MAP from the milk samples was low, regardless of culture medium, with recovery from 2 samples cultured in BACTEC 12B medium, 1 sample cultured in para-JEM medium, and no viable MAP recovered on HEY medium. However, 32 cows were fecal culture positive and 13 milk samples were positive by direct PCR, suggesting that several cows were actively shedding MAP at the time of milk collection. Contamination rates were similar across media, with 39.6, 34.7, and 41.7% of samples contaminated after culture in BACTEC 12B, para-JEM, and HEY media, respectively. Herd-to-herd variation had a major effect on sample contamination, with the percentage of contaminated samples ranging from 4 to 83%. It was concluded that decontamination of milk with NALC-1.5% NaOH before culture in BACTEC 12B medium was the most efficacious method for the recovery of viable MAP from milk, although the ability to suppress the growth of contaminating microorganisms varied greatly between herds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号