首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (CO2 + 2-ethoxyethyl acetate) and (CO2 + 2-(2-ethoxyethoxy)ethyl acetate) systems at 313.2, 333.2, 353.2, 373.2 and 393.2 K as well as pressures up to 20.59 MPa have been investigated using variable-volume high pressure view cell by static-type. The solubility curve of 2-ethoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate in the (CO2 + 2-ethoxyethyl acetate) and (CO2 + 2-(2-ethoxyethoxy)ethyl acetate) systems increases as the temperature increases at a constant pressure. The (CO2 + 2-ethoxyethyl acetate) and (CO2 + 2-(2-ethoxyethoxy)ethyl acetate) systems exhibit type-I phase behavior. The experimental results for the (CO2 + 2-ethoxyethyl acetate) and (CO2 + 2-(2-ethoxyethoxy)ethyl acetate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule including two adjustable parameters. The critical properties of 2-ethoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate are predicted with the Joback–Lyderson group contribution and Lee–Kesler method.  相似文献   

2.
We have conducted experiments to obtain cloud-point data of binary and ternary mixtures for poly(isobornyl acrylate) [P(IBnA)] (Mw = 100,000) + isobornyl acrylate(IBnA) in supercritical carbon dioxide (CO2), P(IBnA) (Mw = 100,000) + dimethyl ether (DME) in CO2, P(IBnA) (Mw = 100,000) in propane and butane, and P(IBnA) (Mw = 1,000,000) in propane, propylene, butane and 1-butene at high pressure conditions. Phase behaviors for these systems were measured at a temperature range from 323.4 K to 474.1 K and pressure up to 296.7 MPa. The cloud-point curves of P(IBnA) (Mw = 100,000) + IBnA and DME in CO2 change from upper critical solution temperature (UCST) behavior to lower critical solution temperature (LCST) behavior as IBnA and DME concentration increases, and liquid–liquid–vapor phase behavior appears for the P(IBnA) (Mw = 100,000) + CO2 + 80.3 wt.% IBnA system. Phase behaviors of P(IBnA) and 50 wt.% IBnA in CO2 and P(IBnA) in propane and butane show the pressure difference in accordance with Mw = 1,000,000 and Mw = 100,000 of P(IBnA). Also, the solubility curves for IBnA in supercritical CO2 were measured at a temperature range of (313.2–393.2) K and pressure up to 22.86 MPa. The experimental results were modeled with the Peng–Robinson equation of state (PR-EOS) using a mixing rule including two adjustable parameters. The critical property of IBnA is estimated with the Joback–Lyderson method.  相似文献   

3.
The experimental solubility of dibenzofuran in near-critical and supercritical carbon dioxide and the solid–liquid–vapor (SLV) equilibrium line for the CO2 + dibenzofuran system are reported. The built in-house static view cell apparatus used in these measurements is described. The solubility of naphthalene in supercritical CO2 and the CO2 + naphthalene SLV line are also determined in order to assess the reliability and accuracy of the measurement technique. The solubility of dibenzofuran in carbon dioxide is determined at 301.3, 309.0, 319.2, 328.7 and 338.2 K in the 6–30 MPa pressure range. Solubility data are correlated using the Chrastil model and the Peng–Robinson equation of state. This equation is also used to predict the CO2 + dibenzofuran SLV line. Results show the feasibility of using supercritical CO2 to extract dibenzofuran.  相似文献   

4.
A polar version of the group contribution PC-SAFT equation of state (GC-PPC-SAFT; Tamouza et al., 2004; NguyenHuynh et al., 2008) combined with a method for correlation/prediction of binary interaction parameters kij (NguyenHuynh et al., 2008) is here applied to model vapor–liquid, liquid–liquid and vapor–liquid–liquid phase equilibria of CO2 + alkanol mixtures simultaneously.A cross-association interaction between CO2 and alkanol had to be taken into account to model/predict the mixtures equilibria accurately. The cross-association parameters were evaluated using the so-called CR1 mixing rules supported by ab initio computations.Extensive prediction tests on CO2 + alkanol mixtures involving linear and branched alkanols are carried out. The results obtained showed that in most cases, the correlation and prediction calculations are qualitatively and quantitatively satisfactory: the overall deviations on liquid phase and vapor phase are respectively ΔX = 3–4% and ΔY = 1–2%.  相似文献   

5.
Vapor–liquid equilibria of the binary supercritical carbon dioxide (scCO2) + oleic acid, scCO2 + palm oil, and scCO2 + palm kernel oil were measured at a wide range of temperatures from 333.2 to 373.2 K and pressures from 8.5 to 35 MPa in a circulation-type phase equilibrium apparatus. The samples from liquid and vapor phases were analyzed using UV–vis spectrometer and a liquid hold-up equipment. The phase equilibrium data were correlated with Peng–Robinson Equation of State (PR-EOS) using Wong–Sandler mixing rule and optimum values of binary interaction parameters were determined. The relative deviation between experimental data and predicted data was in the range of 6.9–8.7%, suggesting that the PR-EOS with Wong–Sandler mixing rule is capable of predicting the vapor–liquid equilibria of oleic acid + scCO2, palm oil + scCO2, and palm kernel oil + scCO2.  相似文献   

6.
To perform an appropriate selection of the lubricants in air conditioned systems working with carbon dioxide as refrigerant, the thermodynamic behavior of the CO2 + lubricant systems must be well known. In this work we present a new setup to prepare compressed gas–liquid mixtures and to determine the high pressure density by using an automated densimeter HPM and two syringe pumps. To analyze the reliability of the procedure proposed, we have determined the densities and mixing volumes of four CO2 + n-decane mixtures. We have found a good agreement with previous literature data. In addition new density values are reported for the binary system CO2 + dipentaerythritol hexaheptanoate (DiPEC7) at several temperatures and pressures from 10 MPa to 120 MPa.  相似文献   

7.
Present work investigated the potential of artificial neural network (ANN) model to correlate the bubble and dew points pressures of binary systems containing carbon dioxide (CO2) and hydrocarbon systems as functions of reduced temperature of non-CO2 compounds, critical pressure, acentric factor of non-CO2 compounds and CO2 composition. In this regards, five binary systems at the temperature and pressure ranges of 263.15–393.15 K at 0.18–12.06 MPa were used to examine the feasibility of cascade-forward back-propagation ANN model. In this regard, the collected experimental data were divided in to two different subsets namely training and testing subsets. The training subset was selected in a way that covers all the ranges of the experimental data and operating conditions. Then, the accuracy of the proposed ANN model was evaluated through a test data set not used in the training stage. The optimal configuration of the proposed model was obtained based on the error analysis including minimum average absolute relative deviation percent (AARD %) and the appropriate (close to one) correlation coefficient (R2) of test data set. The obtained results show that the optimum neural network architecture was able to predict the phase envelope of binary system containing CO2 with an acceptable level of accuracy of AARD % of 2.66 and R2 of 0.9950 within their experimental uncertainty. In addition, comparisons were done between the Peng–Robinson (PR) equation of state (EOS) and ANN model for three different binary systems including CO2 + 1-hexene, CO2 + n-Hexane, and CO2 + n-butane. Results show that developed optimal ANN model is more accurate compared to the PR EOS.  相似文献   

8.
Phase equilibria data is presented for binary systems containing supercritical CO2 and C10-alcohol isomers (1-decanol, 2-decanol, 3,7-dimethyl-1-octanol, 2,6-dimethyl-2-octanol and 3,7-dimethyl-3-octanol) and C10-alkane isomers (n-decane, 2-methylnonane, 3-methylnonane and 4-methylnonane). The phase equilibria measurements were conducted at temperatures between 308 K and 348 K and compositions between 0.0153 and 0.697 mass fraction C10-compound. A temperature inversion is present for the CO2 + 1-decanol system, but was not observed for any other binary system in the temperature and composition ranges studied. The phase transition pressures of the binary systems containing the C10-alcohol isomers differed from one another and it is proposed that the solubility of the compounds are influenced by the hydroxyl group and the side branch positions. The phase transition pressures decreased in the following order: 1-decanol, 3,7-dimethyl-1-octanol, 2-decanol, 2,6-dimethyl-2-octanol and 3,7-dimethyl-3-octanol. No significant difference was observed between the phase behaviour of supercritical CO2 and n-decane and the phase behaviour of supercritical CO2 and the methyl-isomers of n-decane in the temperature and composition ranges studied.  相似文献   

9.
Experimental phase equilibrium data for the systems CO2 + n-dodecane, CO2 + 1-decanol and CO2 + 3,7-dimethyl-1-octanol were used to determine values for binary interaction parameters for use in the RK-ASPEN thermodynamic model in Aspen Plus®. Bubble and dew point data of the mixtures CO2 + (n-dodecane + 1-decanol), CO2 + (n-dodecane + 3,7-dimethyl-1-octanol), CO2 + (1-decanol + 3,7-dimethyl-1-octanol) and CO2 + (n-dodecane + 1-decanol + 3,7-dimethyl-1-octanol) were measured experimentally in a static synthetic view cell, and compared to the data predicted by the RK-ASPEN model. The model predicted the phase equilibrium data reasonably well in the low solute concentration region; significant deviation of model predictions from experimental data occurred in the mixture critical and high solute concentration regions due to the exclusion of solute–solute interaction parameters in the model. Distribution coefficients and separation factors were determined for the multi-component mixture and separation of the alkane from the alcohol mixture with a supercritical fluid extraction process was found to be possible.  相似文献   

10.
Cloud-point data are reported for poly(isopropyl acrylate) [P(IPA)] in CO2, propane, propylene, butane, 1-butene, and dimethyl ether (DME) and for poly(isopropyl methacrylate) [P(IPMA)] in CO2. P(IPA) + alkene cloud-point curves are ∼100 °C lower than the P(IPA) + alkane curves, which are close to the P(IPA) + CO2 curve located at temperatures greater than 130 °C and pressures of 2500 bar. P(IPA) dissolves in pure DME at conditions as mild as 50 °C and 200 bar. Since IPA and IPMA monomers are used as cosolvents with CO2, binary IPA + CO2 and IPMA + CO2 data are reported to complement the ternary cloud-point data. Both monomer + CO2 mixtures exhibit type-I behavior and both are adequately modeled with the Peng–Robinson equation of state. IPMA is a more effective cosolvent than IPA. The polymer + CO2 + monomer phase behavior suggests that it is viable to polymerize IPA or IPMA in CO2 at moderate operating conditions.  相似文献   

11.
1,3,5-tri-tert-butylbenzene (TTBB) is solid at ambient conditions, and has substantial solubility in liquid and supercritical carbon dioxide. We present the phase behavior of TTBB–CO2 binary system at temperatures between 298 and 328 K and at pressures up to 20 MPa. Phase diagrams showing the liquid–vapor, solid–liquid and solid–vapor equilibrium envelopes are constructed by pressure–volume–temperature measurements in a variable-volume sapphire cell. TTBB is highly soluble in CO2 over a wide range of compositions. Single-phase states are achieved at moderate pressures, even with very high TTBB concentrations. For example, at 328 K, a binary system containing TTBB at a concentration of 95% by weight forms a single-phase above 2.04 MPa. TTBB exhibits a significant melting-point depression in the presence of CO2, 45 K at 3.11 MPa, where the normal melting point of 343 K is reduced to 298 K. With its high solubility in carbon dioxide, TTBB has potential uses as a binder or template in materials forming processes using dense carbon dioxide.  相似文献   

12.
The solubilities of caffeine in supercritical CO2, supercritical CO2 + water, supercritical CO2 + ethanol, and supercritical CO2 + water + ethanol were measured with a circulation-type apparatus combined with an on-line Fourier transform infrared (FT-IR) spectrometer at 313.2 K and 15.0 MPa. The solubilities of caffeine were determined with the peak absorbances of caffeine at 1190 cm−1. The solubilities of caffeine increase until water is saturated in supercritical CO2. The maximum increase rate is 22%. In CO2 + caffeine + ethanol system, the solubilities of caffeine increase with increasing the concentration of ethanol. The solubility of caffeine becomes five times when 1000 mol m−3 of ethanol is added. In CO2 + caffeine + water + ethanol system, the solubilities of caffeine are smaller than those with single entrainer of water or ethanol. The shape of the peaks of two CO stretching bands for caffeine were changed by the addition of ethanol. It was confirmed that the interaction species of caffeine interacting with ethanol are produced by deconvolution of the CO stretching bands. The enhancement of solubility for caffeine in supercritical CO2 by the addition of ethanol is due to the hydrogen bonding between caffeine and ethanol.  相似文献   

13.
Vapor liquid equilibrium (VLE) data has significant role in designing processes which include vapor and liquid in equilibrium. Since it is impractical to measure equilibrium data at any desired temperature and pressure, particularly near critical region, thermodynamic models based on equation of state (EOS) are usually used for VLE estimating. In recent years due to the development of numerical tools like artificial intelligence methods, VLE prediction has been find new alternatives.In the present study a novel method called Least-Squares Support Vector Machine (LSSVM) used for predicting bubble/dew point pressures of binary mixtures containing carbon dioxide (CO2) + cyclic compounds as function of reduced temperature of the system, critical pressure, acentric factor of the cyclic compound, and CO2 composition. A 333 binary equilibrium data points of CO2 and six cyclic compounds within temperature and pressure ranges of 308.15–473.15 K and 0.5–27.71 MPa were used to develop the model. Results show that the proposed model is able to predict VLE data for binary systems containing supercritical or near-critical CO2/cyclic compounds with an acceptable average absolute relative deviation percent (AARD%) of 3.9381% and the coefficient of determination (R2) value of 0.9980. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for VLE prediction and the whole phase equilibrium data points are in applicability domain of the model.  相似文献   

14.
The high pressure phase equilibria of ethyl esters (ethyl decanoate/caprate, ethyl dodecanoate/laurate, ethyl tetradecanoate/myristate and ethyl hexadecanoate/palmitate) in supercritical ethane and propane have been measured in the temperature ranges 311–358 K (TR = 1.02–1.17) and 376–409 K (TR = 1.02–1.11), respectively. The measurements were conducted in a high pressure view cell for ethyl ester mass fractions between 0.015 and 0.65. The results show a generally linear relationship between the phase transition temperature and pressure. No temperature inversions or three phase regions were observed. An increase in hydrocarbon backbone length leads to an increase in phase transition pressure. For ethane as supercritical solvent, this increase is linear. For propane as supercritical solvent, the nature of the increase was not quantified as the magnitude of the increase would be significantly influenced by the experimental measurement error as the observed increase is not very large. Comparison of the phase behaviour of ethyl esters with methyl esters shows very little difference, yet the phase transition pressure of ethyl esters in supercritical ethane and propane is significantly lower than those of the corresponding acids. The phase transition pressure of ethyl esters in ethane and propane is also lower than those in carbon dioxide.  相似文献   

15.
This work explored the potential of subcritical liquids and supercritical carbon dioxide (CO2) in the recovery of extracts containing phenolic compounds, antioxidants and anthocyanins from residues of blueberry (Vaccinium myrtillus L.) processing. Supercritical CO2 and pressurized liquids are alternatives to the use of toxic organic solvents or extraction methods that apply high temperatures. Blueberry is the fruit with the highest antioxidant and polyphenol content, which is present in both peel and pulp. In the extraction with pressurized liquids (PLE), water, ethanol and acetone were used at different proportions, with temperature, pressure and solvent flow rate kept constant at 40 °C, 20 MPa and 10 ml/min, respectively. The extracts were analyzed and the highest antioxidant activities and phenolic contents were found in the extracts obtained with pure ethanol and ethanol + water. The highest concentrations of anthocyanins were recovered with acidified water as solvent. In supercritical fluid extraction (SFE) with CO2, water, acidified water, and ethanol were used as modifiers, and the best condition for all functional components evaluated was SFE with 90% CO2, 5% water, and 5% ethanol. Sixteen anthocyanins were identified and quantified by ultra performance liquid chromatography (UPLC).  相似文献   

16.
Dissolution with terpenic solvents is presented as an alternative and original route to recycle Polystyrene wastes at room temperature. Limonene was the chosen solvent to carry out the dissolution process because it presents high compatibility with Polystyrene besides being natural, non toxic and relatively low cost. The solvent removal is possible thanks to supercritical CO2 since it provides high solubility of Limonene and complete PS insolubility at moderated pressures and temperature. In order to determine the proper working conditions to conduct the precipitation of the polymer, accurate knowledge of the phase equilibrium for mixtures of carbon dioxide, Limonene and Polystyrene should be known.In this work, the solubility of Limonene in the ternary system CO2/Limonene/Polystyrene was determined. The phase equilibrium experiments were conducted in a variable-volume view cell employing the static method. These experiments were carried out in the temperature range of 298.15–313.15 K, at pressures up to 15 MPa and in the concentration range of 0.05–0.80 g PS/ml Limonene. Initially the binary systems were studied by means of equations of state: Peng–Robinson in the case of CO2/Limonene and Sanchez–Lacombe in the case of Limonene/PS and CO2/PS. Predicted data were collected together with the experimental to check the agreement and to determine the limits of the ternary system formed by CO2–Limonene–PS. It is indispensable to determine the behaviour of the ternary system to know completely the fluid phase equilibrium. The results indicate that the solubility of Limonene in the vapour phase is favoured by high pressure and temperature as well as low concentration.  相似文献   

17.
The high-pressure vapour–liquid phase equilibria (PTxy) of the binary mixture propylene glycol/CO2 have been experimentally investigated at temperatures of (398.2, 423.2 and 453.2) K over the pressure range from (2.5 to 55.0) MPa using a static-analytic method. Furthermore, the high-pressure vapour–liquid phase equilibria (PTxy) of the ternary mixture propylene glycol/CO2/ethanol at constant temperatures of (398.2, 423.2 and 453.2) K and at constant pressure of 15.0 MPa have been determined using a static-analytic method. Initial concentrations of components in propylene glycol (PG)/ethanol (EtOH) mixture vary from 10 up to 90 wt.%. In general, for binary system it was observed that the solubility of CO2 in the heavy propylene glycol reach phase increases with increasing pressure at constant temperature. On the contrary, the composition of gaseous phase is not influenced by the pressure or the temperature. On average the solubility of PG in light phase of CO2 amounts to 30 wt.%. The system behaviour at temperature of 398.2 K was investigated up to 70.0 MPa and a single-phase region was not observed. Above the pressure 60.0 MPa a single-phase region of the system was observed for the temperature of 423.2 K. For the temperature of 453.2 K the single-phase was observed above the pressure of 48.0 MPa. For ternary system it was observed that the composition of heavy phase is slightly influenced by the temperature when the mass fraction of EtOH in initial mixture is higher than 50 wt.%. If the mass fraction of PG in initial mixture is higher than 50 wt.%, the composition of heavy phase is not influenced by the temperature anymore. The composition of the PG, EtOH and CO2 in light phase remains more or less unchanged and it is not influenced by the conditions.  相似文献   

18.
The aim of this research was to investigate the phase equilibrium behavior of a system containing guaçatonga extract + ethanol + CO2 in order to help define the adequate conditions of temperature and pressure for the co-precipitation process, performed by means of supercritical anti-solvent (SAS) technique. Guaçatonga (Casearia sylvestris) is a native medicinal plant from Brazil, rich in valuable components such as β-caryophyllene, α-humulene and bicyclogermacrene. Phase equilibrium data were obtained by the static method using guaçatonga extract dissolved in ethanol (1:100, wt/wt), at temperatures ranging from 35 to 75 °C and CO2 mass content from 60 to 90 wt%. It was noticed that the system exhibited solid–vapor–liquid, solid–liquid–liquid and solid–vapor–liquid–liquid transition types and a lower critical solution temperature behavior. Phase behavior study was considered for the definition of the SAS conditions applied for the encapsulation of guaçatonga extract in the biopolymer Pluronic F127. The conditions tested ranged from 80 to 140 bar at 45 °C. At 80 bar only segregated particles of extract and the biopolymer were detected, while at 110 and 140 bar an extract encapsulation was achieved.  相似文献   

19.
In order to improve the efficiency of processes using supercritical (sc) carbon dioxide (CO2) to micronize the carotenoid “lycopene”, it is important to know the solubility of lycopene in mixtures of the organic solvent ethyl acetate (EA) and the antisolvent CO2 at elevated pressures. The solubility of lycopene has been determined for different temperatures (313–333 K), pressures (12–16 MPa) and CO2 molar fractions (0.58–1). The obtained data show that CO2 acts as an antisolvent in the system lycopene/EA/CO2 in the range of CO2/EA ratios studied. The solubility of lycopene is rather small with lycopene molar fractions ranging from 0.1 × 10−6 to 46 × 10−6. The solubility of lycopene increases with temperature, pressure and EA concentration.  相似文献   

20.
Ferula orientalis L. stalks were liquefied in an autoclave in supercritical organic solvents (methanol, ethanol, 2-propanol, acetone and 2-butanol) with (NaOH, Na2CO3, ZnCl2) and without catalyst at five different temperatures ranging from 240 °C to 320 °C. The amounts of solid (unconverted raw material), liquid (bio-oil) and gas produced, as well as the composition of the resulting liquid phase, were determined. The effects of various parameters such as temperature, solvent, catalyst and ratio of catalyst on product yields were investigated. The results showed that conversion highly depends on the temperature and catalyst. The highest bio-oil yield (53.97%) was obtained using acetone with 10% zinc chloride at 300 °C. The liquid products were extracted with benzene and diethyl ether. Some of selected liquid products (bio-oils) were analyzed by elemental, FT-IR and GC–MS. 126 different compounds were identified by GC–MS in the liquid products obtained in ethanol at 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号