首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The paper presents the case history of laboratory evaluation of the interface shear strength properties of various interfaces encountered in a modern day landfill with emphasis on proper simulation of field conditions and subsequent use of these results in the stability analyses of liner system. Over 70 large direct shear tests were systematically conducted to evaluate the interface shear strength properties of composite liner system using project specific materials under site specific conditions, being used at non-hazardous and hazardous landfills project situated in Sa Kaeo Province, Thailand. The critical interfaces were located between the geotextiles and the smooth geomembrane (GM), the smooth GM and the geosynthetic clay liner (GCL), and the smooth GM liner and the compacted clay liner (CCL) with the interface friction angles ranging from 6.5° to 10.5° for dry conditions and 6.5° to 9.5° in wet conditions. The residual shear stress for these interfaces was attained at a displacement less than 4 mm. Three methods, namely, limit equilibrium method (LEM), limit method (LM), and the simple composite column (SCC) approach were used to evaluate the tensile loads induced in the geosynthetic components. The SCC approach proposed by Liu, C.N. [2001. Tension of geosynthetics material regarding soils on landfill liner slopes. Proceedings, National Science Council ROC(A), 25(4), 211–218] that takes into account the force equilibrium as well as displacement compatibility yielded satisfactory results. The factor of safety for geosynthetic components in the liner was found to be greater than 3.0 for both types of landfill.  相似文献   

2.
Torsional ring shear tests were performed on composite specimens that simulate the field alignment of municipal solid waste (MSW) landfill liner and cover system components. Simultaneous shearing was provided to each test specimen without forcing failure to occur through a pre-determined plane. Composite liner specimens consisted of a textured geomembrane (GM) underlain by a needle-punched geosynthetic clay liner (GCL) which in turn underlain by a compacted silty clay. Hydrated specimens were sheared at eleven different normal stress levels. Test results revealed that shear strength of the composite liner system can be controlled by different failure modes depending on the magnitude of normal stress and the comparative values of the GCL interface and internal shear strength. Failure following these modes may result in a bilinear or trilinear peak strength envelope and a corresponding stepped residual strength envelope. Composite cover specimens that comprised textured GM placed on unreinforced smooth GM-backed GCL resting on compacted sand were sheared at five different GCL hydration conditions and a normal stress that is usually imposed on MSW landfill cover geosynthetic components. Test results showed that increasing the GCL hydration moves the shearing plane from the GCL smooth GM backing/sand interface to that of the textured GM/hydrated bentonite. Effects of these interactive shear strength behaviors of composite liner and cover system components on the possibility of developing progressive failure in landfill slopes were discussed. Recommendations for designing landfill geosynthetic-lined slopes were subsequently given. Three-dimensional stability analysis of well-documented case history of failed composite system slope was presented to support the introduced results and recommendations.  相似文献   

3.
A triple-layer composite liner consisting of a geomembrane liner (GMB), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom liner system to isolate the contaminated leachates. In this paper, one-dimensional quasi-steady-state small deformation model (SDSS) was developed to investigate the behavior of organic chemicals transport in landfill composite liner system considering coupled effect of consolidation, diffusion and degradation. The first and second type bottom boundary conditions are used to derive the analytical solutions. The generalized integral transform technique (GITT) is adopted to derive the analytical solutions. The effect of consolidation on the performance of GMB/GCL/CCL with intact or leaking GMB is investigated. The triple liner under double drainage boundary condition (DDBC) has better performance compared to the case under single drainage boundary condition (SDBC). This is because the velocity induced by consolidation under DDBC is lower than that under SDBC. The effect of GCL consolidation shows an opposite trend compared to CCL consolidation. Considering GCL consolidation can increase the breakthrough time. The effective diffusion coefficient of GCL can be two magnitude orders smaller after consolidation, which provides a better diffusion barrier for the chemical transport. The effects of adsorption and degradation have been analyzed as well. Increasing the adsorption capacity of a deforming composite liner can increase the steady-state bottom flux, which shows the opposite tendency compared to the case without considering consolidation. This is due to the fact that for the case of a deforming composite liner, the advection induced by consolidation includes a new term due to the solid velocity. This velocity will result in the increase the mass of chemical migration through the composite liner.  相似文献   

4.
氨氮是垃圾渗滤液中最具代表性的污染物之一,但其在土工合成黏土衬垫(GCL)中的扩散行为至今尚未得到重视。开展批式吸附试验和扩散试样浸提试验测定氨氮在GCL中的吸附分配系数;进行扩散试验测定氨氮在GCL中的扩散系数;基于试验得到的吸附分配系数和扩散系数,使用数值软件POLLUTE v7.0对氨氮在GCL中的运移行为进行模拟。试验结果表明,氨氮在膨润土上的吸附分配系数为0.017L/g,在GCL中的扩散系数约为9.0×10-11m2/s。POLLUTE v7.0的模拟结果显示,当考虑扩散存在时,氨氮将提前30 a击穿GCL。  相似文献   

5.
Shrinkage cracking is the primary reason for the anti-seepage failure of compacted clay liner (CCL) in a landfill final cover. With a focus on the surface crack characteristics and the water content distribution of three CCLs with different liquid limits and their mineral compositions, experiments were conducted to investigate the cracking mechanism of a CCL during the drying process. The results showed that the total crack ratio (TCR), the sum of the surface shrinkage crack ratio (SCR) and the surface boundary shrinkage ratio (BSR), is a function of the surface water content of a CCL. The change in the TCR with surface water content is consistent with the soil shrinkage characteristic curve (SSCC). The surface SCR is a function of the surface water content gradient of a CCL. The variations in the SCR with the water content gradient can be divided into the following three stages: the crack open stage, the crack linear expansion stage and the crack linear close stage. The effect of sample size, surface boundary shrinkage and shrinkage cracking are the main deformations of CCL specimens with low and high liquid limits, respectively, during the drying process. An increase in the amount of clay minerals in CCLs enhances the soil shrinkage capacity, leading to an increase in the SCR under the same water content gradient. A unified linear relationship exists between SCR/Kj (where Kj is the slope of the SSCC) and the water content gradient in the crack linear expansion stage and the crack linear close stage for different CCL types.  相似文献   

6.
In municipal solid waste landfills, a triple-layer composite liner consisting of a geomembrane liner (GML), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom to isolate the leachates from surrounding environment. This paper presents a numerical investigation of the effect of liner consolidation on the transport of a volatile organic compound (VOC), trichloroethylene (TCE), through the GML/GCL/CCL composite liner system. The numerical simulations were performed using the model CST3, which is a piecewise linear numerical model for coupled consolidation and solute transport in multi-layered soil media and has been extensively validated using analytical solutions, numerical solutions and experimental results. The performed numerical simulations considered coupled consolidation and contaminant transport with representative geometry, material properties, and applied stress conditions for a GML/GCL/CCL liner system. The simulation results indicate that, depending on conditions, consolidation of the GCL and CCL can have significant impact on the transport results of TCE (i.e., TCE mass flux, cumulative TCE mass outflow, and distribution of TCE concentration within the GCL and CCL), both during the consolidation process and long after the completion of consolidation. The traditional approach for the assessment of liner performance neglects consolidation of the GCL and CCL and fails to consider the consolidation-induced transient advection and concurrent changes in material properties and, therefore, can lead to significantly different results. These differences for with and without the consolidation effects can range over several orders of magnitude. The process of consolidation-induced contaminant transport is complex and involves many variables, and therefore case-specific analysis is necessary to assess the significance of liner consolidation on VOC transport through a GML/GCL/CCL composite liner system.  相似文献   

7.
The paper examines the effects of settlement-induced downdrag on geosynthetic liner systems for a waste containment facility with steep side slopes for different design scenarios, and conducts the stability analysis of the waste mass during waste filling operations. Without the presence of a reinforcing layer above a geomembrane (GMB) liner, the liner experiences unacceptable tensile strains under both short- and long-term downdrag waste settlements. It is shown that an anchored high strength/stiffness geotextile (HS-GTX) reinforcement over the GMB can reduce the GMB tensile strains to less than 3%, but the HS-GTX itself may be overloaded. A geosynthetic slip layer over the full or partial HS-GTX reinforcement overlying the GMB can reduce the tensile strains of the GMB to less than 3% and of the HS-GTX to less than 5% by providing a preferential slip plane between the geosynthetic slip layer and the HS-GTX. A rupture of the geosynthetic slip layer is likely to occur resulting in the exposure of the HS-GTX to the waste, but the protection of the GMB by the HS-GTX is still expected. The results from the stability analysis show that, during waste filling operations under a given factor of safety, there is a critical relationship between the width of the top of the waste pile and the total waste thickness.  相似文献   

8.
Municipal solid waste (MSW) landfill cover systems are designed to minimize the infiltration of rainwater into waste and to mitigate the biogas emissions to the atmosphere. In the present study, the efficacy of such a landfill cover system consisting of a Geosynthetic clay liner (GCL)in mitigating the hydraulic flow and gas emissions under arid climatic conditions was investigated critically. For this purpose, the water retention curve (WRC), hydraulic conductivity function, and gas flow characteristics of the chosen GCL were studied through experimental methods in the laboratory. The unsaturated transient state seepage analysis utilizing coupled hydraulic and gas flow mechanisms was performed in the study to assess the performance of the cover system. The results obtained from the experiments were used as input parameters. The effect of drying/desiccation and the self-healing nature of GCL due to climatic changes were also analyzed by exposing the GCL directly to the climatic boundary for one year. It was observed that the GCL present in the chosen cover system effectively functions as a hydraulic barrier in arid climatic conditions. However, during the summer and winter seasons, an increase in gas flow from 0.02 g/h/m2 to 24.7 g/h/m2 was observed, probably due to the drying anddesiccation of GCL. Interestingly, due to the self-healing nature of the GCL, gas flow through the cover system was substantially reduced to 0.02 g/h/m2 during the rainy season. The effect of drying was more pronounced when the GCL was exposed to the climatic condition, leading to an early gas breakthrough and an increase in gas flow from 0.02 g/h/m2 to 957 g/h/m2. The percolation through the cover system remains considerably low throughout the year, mostly due to the unsaturation and low hydraulic conductivity in GCL. A cumulative percolation close to 0.1 m3 was observed at the end of one year in arid climatic conditions.  相似文献   

9.
为避免垃圾填埋场对地下水的污染,衬垫系统的截污性能至关重要。针对卫生垃圾填埋场衬垫底部设有地下水导排层的工程要求,建立了污染物在有限厚度土层中一维对流-扩散-吸附解析模型并求解,其中模型底部采用Cauchy边界模拟渗滤液污染物透过衬垫向零浓度环境传质。算例结果表明,解析解与商用软件数值解所得浓度场分布完全吻合;参数分析表明,吸附、扩散和对流参数对击穿曲线均有较大影响,为延长击穿时间,应尽可能采用吸附性能好的土层并严格控制衬垫上的水头高度。  相似文献   

10.
Tensile strain development in high-density polyethylene (HDPE) geomembrane (GMB) liner systems in landfills was numerically investigated. A new constitutive model for municipal solid waste (MSW) that incorporates both mechanical creep and biodegradation was employed in the analyses. The MSW constitutive model is a Cam-Clay type of plasticity model and was implemented in the finite difference computer program FLAC?. The influence of the friction angle of the liner system interfaces, the biodegradation of MSW, and the MSW filling rate on tensile strains were investigated. Several design alternatives to reduce the maximum tensile strain under both short- and long-term waste settlement were evaluated. Results of the analyses indicate that landfill geometry, interface friction angles, and short- and long-term waste settlement are key factors in the development of tensile strains. The results show that long-term waste settlement can induce additional tensile strains after waste placement is complete. Using a HDPE GMB with a friction angle on its upper interface that is lower than the friction angle on the underlying interface, increasing the number of benches, and reducing the slope inclination are shown to mitigate the maximum tensile strain caused by waste placement and waste settlement.  相似文献   

11.
Jones EH  Su C 《Water research》2012,46(7):2445-2456
Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic strength, the presence of natural organic matter (humic and fulvic acids) and an organic buffer (Trizma). At neutral pHs, Cu0 nanoparticles were positively charged and essentially immobile in porous media. The presence of natural organic matter, trizma buffer, and high pH decreased the attachment efficiency facilitating elemental copper transport through sand columns. Experimental results suggested the presence of both favourable and unfavourable nanoparticle interactions causes significant deviation from classical colloid filtration theory.  相似文献   

12.
《Soils and Foundations》2022,62(6):101223
Granulated bentonite mixtures (GBMs) have been regarded as effective buffer materials in the deep geological disposal of radioactive waste due to their operational advantages, such as ease of transportation and in-situ placement/backfilling. Many studies have been done to characterize the hydraulic and thermal properties of GBMs as well as their swelling properties. Only limited studies, however, have investigated their gas transport properties, even though these properties affect their compactness during in-situ placement/backfilling and subsequent gas diffusion and advection in the buffer zone. The aim of this study is to understand the gas transport parameters, i.e., air permeability (ka) and gas diffusivity (Dp/Do), of tested samples compacted at different dry densities (DDs) under air-dried conditions, linking them with the measured density distribution characteristics determined by microfocus X-ray computed tomography (MFXCT) analysis. Two types of GBMs were used in this study: 1) FE-GBM (prepared from National Standard® bentonite, Wyoming, USA): this material was used in the Full-scale Emplacement (FE) experiment at the Mont Terri rock laboratory, Switzerland) and 2) OK-GBM (prepared from a bentonite, originating from Japan, with the trade name of OK bentonite, Kunimine Industries). The tested samples were firstly packed in a 100-cm3 acrylic core with different DDs, ranging from loose to dense (1.09 to 1.75 g/cm3), and scanned by MFXCT. The weighting factors, wf (fine fraction; lower density) and wc (coarse fraction; higher density) (wf + wc = 1), were determined after the peak separation of the measured CT brightness histograms from the reconstructed three-dimensional multiplanar reconstruction (MPR) images of the MFXCT analysis. The measured ka and Dp/Do were highly dependent on the DDs, the ka (?) values fitted well with a power law model, and the Dp/Do (?) was predicted accurately by several previously proposed models. For both FE-GBM and OK-GBM, there were good linear relationships between the gas transport parameters and wc × DD, implying that the weight of the coarse fraction controlled ka and Dp/Do. Moreover, the Kozeny-Carman model, incorporating the measured volumetric surfaces from the MFXCT analysis, was able to predict the ka values well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号