首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
非约束环境下,光照、姿态、表情、遮挡、复杂背景等因素给人脸识别带来严重影响。主动表观模型(Active Appearance Model, AAM) 能够建立包含人脸形状和纹理信息的先验模型对图像中的人脸进行匹配,合成新的人脸图像。Gabor特征被广泛地应用在人脸识别中,并取得了很好的效果。利用AAM对人脸图像进行姿态校正,合成标准正面人脸图像,然后提取图像的熵增强Gabor jets特征,使用带有阈值的Borda count分类器进行人脸识别。在IMM数据库上的试验表明,改进的方法对姿态、表情以及遮挡具有更高的鲁棒性,可以得到更好的识别效果。  相似文献   

2.
针对复杂环境下人脸识别难度大的问题,提出了一种熵权法融合局部Gabor特征方法。计算类熵加权向量;计算局部归一化输入图像的Borda计数矩阵,从而消除低值Gabor jet比较矩阵;通过将分数层类熵加权Gabor特征与LGBP和LGXP融合解决了完成人脸的识别。在FERET、AR和FRGC 2.0人脸数据库上的实验结果表明,该方法对轻微姿态变化具有显著鲁棒性,并且对人眼检测中高达3像素的误差具有鲁棒性,相比其他几种人脸识别方法,该方法取得了更好的识别效果。  相似文献   

3.
针对基于稀疏表示分类方法的训练样本于与类别标签信息提取不足,特别是在训练样本和待测样本都受到噪声污染的情况下将会明显下降及算法复杂度较高的问题,提出以Gabor特征以及加权协同为基础的人脸识别算法;最初需要对人脸图像内所包含的各个尺度以及方向的Gabor特征完成提取,在稀疏表示中引入Gabor特征,将降维后的Gabor特征矩阵作为超完备字典,再用稀疏表示增强加权协同表示得到该字典下的的稀疏表示系数,然后利用增强系数与训练样本的标签矩阵完成对测试样本进行分类识别,从而得到Gabor特征以及加权的协同表示分类方法,在Yale人脸数据库、Extended Yale B和AR人脸数据库上以及在FERET人脸数据库对人脸姿态变化的实验表明新算法具有更好的识别率和较短的计算时间.  相似文献   

4.
基于局部二元模式Gabor小波变换的人脸识别   总被引:1,自引:0,他引:1  
将局部二元模式(LBP)与Gabor小波变换相结合,用LBP算子对Gabor特征幅值的邻域变化进行编码,并用直方图分析LBP编码后的局部变化属性,这样避免了因下采样造成的信息损失,同时又通过直方图统计达到了降维的目的.实验结果表明,该方法结合了LBP与Gabor变换的优点,增强了直方图的鉴别能力,又能有效降低维数,取得了较理想的识别效果.  相似文献   

5.
基于全局和局部特征集成的人脸识别   总被引:14,自引:1,他引:13       下载免费PDF全文
苏煜  山世光  陈熙霖  高文 《软件学报》2010,21(8):1849-1862
提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人脸库(FERET and FRGC v2.0)上的实验结果表明,此方法不仅可以显著提高系统的精度,而且可以提升系统的速度.  相似文献   

6.
郑雪原 《自动化应用》2023,(7):54-56+60
在现代生物技术研发和升级中,人脸识别技术作为生物识别技术中的重要组成部分,目前已经被广泛应用于金融、公共安全、人像分割以及身份鉴别等领域。在人脸特征提取中,局部特征提取环节十分关键,而提取质量很容易受遮挡、光照等因素影响。为进一步提升人脸局部特征提取的质量,本文围绕LBP、Gabor两种算法展开分析,并分别探讨了两种识别算法的操作过程。  相似文献   

7.
基于局部特征分析的人脸识别方法   总被引:16,自引:0,他引:16  
在传统的弹性图匹配基础上,提出一种基于局部特征分析的人脸识别算法。该方法利用人脸的先验结构和人脸图像的灰度分布知识,首先粗略地找出人脸图像的特征点,然后利用人脸弹性图对特征点的位置进行调整。最后在各个特征点处计算Gabor变化的系数,人脸相应被表示为特征点处的Gabor系数集合,对提取的特征向量用几种不同的度量距离来进行分类,并给出测试结果。实验表明,该方法优于传统的Eigenface方法,特别适用于训练图像样本较少的情况。相对于传统的弹性图匹配方法,该方法由于人脸特征点预先被估算出,而不是在整个图像上搜索,所以大大减少了计算量。  相似文献   

8.
针对局部图结构算法(local graph structure,LGS)构建图结构时用到的像素点距离中心像素太远,以及在图结构形成后分配权重时没有结合周围像素点到中心像素的距离因素问题,提出加权紧凑局部图结构(weighted compact local graph structure,WCLGS)算法。该算法定义了一种混合特征提取策略,从四个方向为中心像素点构建图结构,分别在垂直方向和对角线方向捕获对称和非对称信息,并且在图结构形成后对距中心像素点近的边赋较大的权重,对距中心像素点远的边赋较小的权重。WCLGS通过提取更近的像素点信息和合理的加权策略,密切关注中心像素点的近邻元素的差异,使得中心点两侧的信息提取更加均匀充分。实验证明,与现有的一些局部图结构算法相比,WCLGS在ORL(Olivetti Research Laboratory)、AR(active record)和HD(high definition)热红外人脸数据库上有更好的识别率和性能。  相似文献   

9.
在基于Fisher准则的字典学习算法中,初始字典的选取和目标函数的构建,严重影响字典学习的效果。为了减少初始字典的影响,提高算法的表达和判别能力。提出了一种结合Gabor特征和自适应加权Fisher准则的人脸识别算法。该算法首先采用Gabor滤波器提取人脸特征,将提取到的Gabor人脸特征作为人脸训练集;通过添加遗忘函数和根据样本间的距离对训练样本自适应加权,改进Fisher准则字典学习算法;利用测试样本编码系数的误差进行识别。在人脸库上的实验表明,算法不仅能很好地提取图像的特征信息,而且可以有效地提高人脸识别率。  相似文献   

10.
针对现有预处理算法存在的缺陷及单一人脸特征在识别中的局限性,本文在基于双眼独立动态阈值的人脸预处理方法的基础上,研究全局特征PCA、2DPCA与局部特征LBP、Gabor,分析对比这几种特征的识别效果及适用情况;根据对这几种特征的研究分析,采用特征融合的方式对PCA和LBP特征进行融合;实验结果验证了在ORL库和ESSEX库上采用决策级融合的识别率优于特征级融合及单一特征的识别率。  相似文献   

11.
基于二维Gabor小波特征的三维人脸识别算法   总被引:1,自引:1,他引:1  
孔华锋  鲁宏伟  冯悦 《计算机工程》2008,34(17):200-201
分析三维人脸识别技术,提出一种基于Gabor小波特征的三维人脸识别算法。该算法采用二维Gabor小波特征精确且稳定地描述人脸特征,重建三维人脸模型并对其进行模板匹配,对匹配后的三维人脸模型进行线性判别分析。对基于ORL和UMIST两个人脸数据库的实验结果表明,该算法性能优良。  相似文献   

12.
一种鲁棒高效的人脸特征点跟踪方法   总被引:2,自引:0,他引:2       下载免费PDF全文
黄琛  丁晓青  方驰 《自动化学报》2012,38(5):788-796
人脸特征点跟踪能获取除粗略的人脸位置和运动轨迹以外的人脸部件的精确信息,对计算机视觉研究有重要作用.主动表象模型(Active appearance model, AAM)是描述人脸特征点位置的最有效的方法之一,但是其高维参数空间和梯度下降优化策略使得AAM对初始参数敏感,且易陷入局部极值. 因此,基于传统AAM的人脸特征点跟踪方法不能同时较好地解决大姿态、光照和表情的问题.本文在多视角AAM的框架下,提出一种结合随机森林和线性判别分析(Linear discriminate analysis, LDA)的实时姿态估计算法对跟踪的人脸进行姿态预估计和更新,从而有效地解决了视频人脸大姿态变化的问题.提出了一种改进的在线表象模型(Online appearance model, OAM)方法来评估跟踪的准确性,并自适应地通过增量主成分分析(Principle component analysis, PCA) 学习来更新AAM的纹理模型,极大地提高了跟踪的稳定性和模型应对光照和表情变化的能力.实验结果表明,本文算法在视频人脸特征点跟踪的准确性、鲁棒性和实时性方面都有良好的性能.  相似文献   

13.
人脸的个性特征可以很好地描述某个人的人脸,而人脸个性特征的正确选择对人脸比对至关重要.因此提出了基于个性化特征分析的实时人脸比对方法.该方法首先利用Adaboost算法进行人脸定位,接着由主动表观模型AAM进行特征点的自动标定,然后给出了人脸个性特征参数的选择方法.在特征参数权重分析基础之上,提出了基于加权模板的人脸比对算法和模板阈值确定方法.实验结果表明,该方法不仅简单有效,而且在拒识率和误识率方面可以取得比较好的综合效果,适用于实时人脸考勤门禁系统.  相似文献   

14.
改进的ASM方法在人脸定位中的应用   总被引:1,自引:0,他引:1  
刘爱平  周焰  关鑫璞 《计算机工程》2007,33(18):227-229
在传统ASM模型的基础上,采用以轮廓点为中心的矩形区域的DCT系数进行轮廓匹配,提出了一种改进算法。该方法充分利用了轮廓点附近的二维纹理信息,改善了ASM方法采用轮廓点附近一维灰度信息导致模型匹配精度不高的问题。DCT 具有良好的去相关性能和能量集中性能,仅采取3.52%的DCT系数却平均保留了图像95%的能量,并采用八方向搜索最佳轮廓点,提高了定位速度。实验证明该方法非常有效。  相似文献   

15.
Face recognition has a wide range of possible applications in surveillance, human computer interfaces and marketing and advertising goods for selected customers according to age and gender. Because of the high classification rate and reduced computational time, one of the best methods for face recognition is based on Gabor jet feature extraction and Borda count classification. In this paper, we propose methodological improvements to increase face recognition rate by selection of Gabor jets using entropy and genetic algorithms. This selection of jets additionally allows faster processing for real-time face recognition. We also propose improvements in the Borda count classification through a weighted Borda count and a threshold to eliminate low score jets from the voting process to increase the face recognition rate. Combinations of Gabor jet selection and Borda count improvements are also proposed. We compare our results with those published in the literature to date and find significant improvements. Our best results on the FERET database are 99.8%, 99.5%, 89.2% and 86.8% recognition rates on the subsets Fb, Fc, Dup1 and Dup2, respectively. Compared to the best results published in the literature, the total number of recognition errors decreased from 163 to 112 (31%). We also tested the proposed method under illumination changes, occlusions with sunglasses and scarves and for small pose variations. Results on two different face databases (AR and Extended Yale B) with significant illumination changes showed over 90% recognition rate. The combination EJS-BTH-BIP reached 98% and 99% recognition rate in images with sunglasses and scarves from the AR database, respectively. The proposed method reached 93.5% recognition on faces with small pose variation of 25° rotation and 98.5% with 15% rotation in the FERET database.  相似文献   

16.
为了从Gabor滤波后的幅值图中提取更加有效的分类特征,提出了一种新的基于Gabor定向模式(GDP)的人脸识别方法。首先对人脸图像进行多尺度多方向的Gabor滤波,然后提出了一种新的GDP算子通过对每种尺度下所有方向的Gabor幅度图进行编码得到每种尺度对应的GDP模式图,最后将所有GDP模式图的直方图向量串联作为最终的人脸表示。由于GDP算子同时对同一尺度下的所有方向上的Gabor幅度响应进行编码,因而GDP特征不仅对外界变化具有较好的鲁棒性,而且能够显著降低最终的特征长度。在ORL和CAS-PEAL人脸库上的实验结果显示GDP方法能以更小的特征长度获得优于传统LGBP及LGXP等方法的识别效果,证明了方法的有效性。  相似文献   

17.
传统算法通常需在头部稳定或光线明亮的情况下进行,较难在自然条件下对多姿态头部运动时的人眼进行跟踪。针对该问题,提出基于Kinect传感器的瞳孔定位算法,使用三维主动表观模型( AAM)对眼轮廓匹配得到眼部特征点,粗定位分割出眼睛,再对瞳孔进行精确定位。实验表明:在多姿态与头部带有遮挡物的情况下仍能较好地跟踪和定位人眼。  相似文献   

18.
最近基于原型(Prototype)加变差(Variation)表示模型的稀疏表示方法被有效用于人脸识别。由于该算法是基于整个人脸来考虑的,忽略了人脸局部特征对整个识别过程的影响。为了解决这个问题,引入了分块处理的思想,运用Borda计数的方法对每个子模块按照残差大小进行投票,根据最终的投票结果对人脸进行分类判别。在AR人脸库上的实验结果表明该方法与其他方法相比,在对具有部分遮挡和光照变化人脸的识别上具有更好的效果。  相似文献   

19.
Gabor特征判别分析人脸识别方法的误配准鲁棒性分析   总被引:1,自引:0,他引:1  
人脸识别领域中,Gabor特征人脸表示方法因其在应用中获得的高首选识别率而被认为是一种理想的人脸特征表示方法。文章用一种全新的量化评价方法,结合配准精度和识别率,从误配准鲁棒性角度评价Gabor特征在人脸识别中的优越性。实验表明,和图像灰度信息特征相比,Gabor特征不仅在精确配准时具有高识别率,而且对由于人脸特征定位不精确而导致的图像变化的鲁棒性也更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号