首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
记录光路采用Mach-Zender干涉法,CCD作为记录介质,以数字的形式记录了微粒场的离轴菲涅耳数字全息图,利用Fresnel-Kirchhoff衍射积分数字再现出了微粒场的复振幅分布。通过对尺寸39μm大小标准粒子场的记录再现,分析确定了准确检测出标准再现粒子数量的灰阶阈值范围和面积阈值范围。以检测出标准粒子的阈值范围为基准,在相同测量条件下,对采样大气微粒场进行再现检测,准确检测出了不同再现截面上尺寸大小接近39μm及大于39μm的聚焦粒子的数量,并采用多截面再现平均测量法估算测量了采样大气微粒场中微粒的数量及浓度。  相似文献   

2.
《Ultramicroscopy》1986,19(2):179-190
The digitized in-line electron holograms recorded in an HB-5 STEM instrument were reconstructed by computer processing in place of optical reconstruction. The important parameters of the holograms, namely the spherical aberration and defocus, can be obtained from the electron Ronchigrams. The reconstructed image shows some improvement in resolution as compared with the STEM bright field image. The main limitations appear to be mechanical vibration, drift of the specimen, the relatively small number of pixels in the images, and the uncertainties in determining the spherical aberration coefficient and defocus value.  相似文献   

3.
提出计算机生成全息图的新的算法.全息条纹数据以计算机图像格式存储,并以视频信号传输到液晶板上显示,用该电全息实时三维成像.液晶板的分辨率、对比度及由全息图的灰度决定的调制度会对再现造成影响.因此在算法中考虑这些因素,并通过确定像面分布的情况下逆推求出全息面上的光波的振幅和位相分布再优化编码来减少再现误差.最后给出了实验结果,并对再现进行像质评价.  相似文献   

4.
Digital holography makes it possible to acquire quickly the interference patterns of objects spread in a volume. The digital processing of the fringes is still too slow to achieve on line analysis of the holograms. We describe a new approach to obtain information on the direction of illuminated objects. The key idea is to avoid reconstruction of the volume followed by classical three-dimensional image processing. The hologram is processed using a global analysis based on autocorrelation. A fundamental property of diffraction patterns leads to an estimate of the mean geometric covariogram of the objects projections. The rose of directions is connected with the mean geometric covariogram through an inverse problem. In the general case, only the two-dimensional rose of the object projections can be reconstructed. The further assumption of unique-size objects gives access with the knowledge of this size to the three-dimensional direction information. An iterative scheme is suggested to reconstruct the three-dimensional rose in this special case. Results are provided on holograms of paper fibres.  相似文献   

5.
《Ultramicroscopy》2006,106(1):18-27
The three-dimensional (3D) morphology of a nanometer-sized object can be obtained using electron tomography. Variations in composition or density of the object cause variations in the reconstructed intensity. When imaging homogeneous objects, variations in reconstructed intensity are caused by the imaging technique, imaging conditions, and reconstruction. In this paper, we describe data acquisition, image processing, and 3D reconstruction to obtain and compare tomograms of magnetite crystals from bright field (BF) transmission electron microscopy (TEM), annular dark-field (ADF) scanning transmission electron microscopy (STEM), and high-angle annular dark field (HAADF) STEM tilt series. We use histograms, which plot the number of volume elements (voxels) at a given intensity vs. the intensity, to measure and quantitatively compare intensity distributions among different tomograms. In combination with numerical simulations, we determine the influence of maximum tilt angle, tilt increment, contrast changes with tilt (diffraction contrast), and the signal-to-noise ratio (SNR) as well as the choice of the reconstruction approach (weighted backprojection (WB) and sequential iterative reconstruction technique (SIRT)) on the histogram. We conclude that because ADF and HAADF STEM techniques are less affected by diffraction, and because they have a higher SNR than BF TEM, they are better suited for tomography of nanometer-sized crystals.  相似文献   

6.
The three-dimensional (3D) morphology of a nanometer-sized object can be obtained using electron tomography. Variations in composition or density of the object cause variations in the reconstructed intensity. When imaging homogeneous objects, variations in reconstructed intensity are caused by the imaging technique, imaging conditions, and reconstruction. In this paper, we describe data acquisition, image processing, and 3D reconstruction to obtain and compare tomograms of magnetite crystals from bright field (BF) transmission electron microscopy (TEM), annular dark-field (ADF) scanning transmission electron microscopy (STEM), and high-angle annular dark field (HAADF) STEM tilt series. We use histograms, which plot the number of volume elements (voxels) at a given intensity vs. the intensity, to measure and quantitatively compare intensity distributions among different tomograms. In combination with numerical simulations, we determine the influence of maximum tilt angle, tilt increment, contrast changes with tilt (diffraction contrast), and the signal-to-noise ratio (SNR) as well as the choice of the reconstruction approach (weighted backprojection (WB) and sequential iterative reconstruction technique (SIRT)) on the histogram. We conclude that because ADF and HAADF STEM techniques are less affected by diffraction, and because they have a higher SNR than BF TEM, they are better suited for tomography of nanometer-sized crystals.  相似文献   

7.
To enhance the capability of digital particle holography as a tool for flow field measurements, several effective methods are developed. The correlation coefficient method was used to accurately locate the focal plane of particles and the optimal factors of this method were discussed. To remove noises and improve the quality of holograms and reconstructed images, the Wiener filter was adopted. The two-threshold and image segmentation methods were used to obtain high quality binary images from which we can get good results of particle extraction. Based on the above methods, an in-line digital particle holographic system was applied to channel flow field and the axial velocities of channel flow were measured. The feasibility of these methods is verified by quantitative measurement results which are in good agreement with the theoretical predictions.  相似文献   

8.
Multilayer images of living cells are typically obtained using confocal or multiphoton microscopy. However, limitations on the distance between consecutive scan layers hinder high‐resolution three‐dimensional reconstruction, and scattering strongly degrades images of living cell components. Consequently, when overlapping information from different layers is focused on a specific point in the camera, this causes uncertainty in the depiction of the cell components. We propose a method that combines the Fresnel incoherent correlation holography and a depth‐of‐focus reduction algorithm to enhance the depth information of three‐dimensional cell images. The proposed method eliminates overlap between light elements in the different layers inside living cells and limitations on the interlayer distance, and also enhances the contrast of the reconstructed holograms of living cells.  相似文献   

9.
Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.  相似文献   

10.
针对传统全息技术对三维数据源要求高、计算量大以及实现速度慢等问题,提出了一种三维物体全视差全息体视图的快速计算方法。该方法对全息面和再现面分别进行空间分割和频谱采样,通过迭代傅里叶变换算法计算多个基元全息图,叠加构成全息图单元。由摄像机获取三维物体不同角度的二维视差图像,基于人眼双目视差立体视觉原理,构建视差图像与全息图单元的对应关系。最后,利用全视差图像调制全息图单元中对应衍射方向的基元全息图,快速合成三维物体全视差全息体视图。基于液晶空间光调制器构建的光学系统对全息体视图进行了再现实验。结果表明,与传统全息图计算方法相比,本文方法容易获取数据源,计算量较小,能够快速计算全息体视图,实现三维物体不同视角图像的再现。  相似文献   

11.
光场成像技术中光场的采集和数据的压缩处理是亟待解决的问题。为了实现光场的稀疏采样和恢复,建立了基于光场低秩结构的压缩采样相机系统,研究了光场矩阵的结构特征及压缩采样下光场图像的重构问题。根据静态光场各视点图像之间的内容相似性,将这些图像向量化并按列组合成一个二维矩阵,该矩阵呈现出低秩或近似低秩的状态。对光场图像矩阵进行低秩分解,结果表明偏离低秩的部分呈现出很强的稀疏性性质,低秩和稀疏各自表征不同的数据冗余度。然后,对基于掩膜的相机采样系统进行随机Noiselets变换测量,鉴于重构过程是一个低秩稀疏相关性约束下的优化求解问题,采用贪婪迭代求解分别重构出光场矩阵的低秩部分和稀疏部分。仿真结果表明,重构图像的PSNR维持在25dB以上,且保留了光场视点间的视差信息,能够满足稀疏采样中对光场图像的要求。  相似文献   

12.
Different arrangements for digital double-pulse holographic and speckle interferometry for vibration analysis are described. In the case of digital double-pulse holographic interferometry, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes which are obtained by digital reconstruction of the wavefront produced by the hologram. The deformation is obtained from the phase difference. In the case of ESPI (or image plane hologram) the phase can be calculated by using the sinusoid-fitting method or the Fourier method. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the three-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed, together with the derotator needed.  相似文献   

13.
Digital holographic microscope allows imaging of opaque and transparent specimens without staining. A digitally recorded hologram must be reconstructed numerically at the actual depth of the object to obtain a focused image. We have developed a high‐resolution digital holographic microscope for imaging amplitude and phase objects with autofocusing capability. If the actual depth of an object is not known a priori, it is estimated by comparing the sharpness of several reconstructions at different distances, which is very demanding in means of computational power when the recorded hologram is large. In this paper, we present 11 different sharpness metrics for estimating the actual focus depths of objects. The speed performance of focusing is discussed, and a scaling technique is introduced where the speed of autofocusing increases on the order of square of the scale ratio. We measured the performance of scaling on computer‐generated holograms and on recorded holograms of a biological sample. We show that simulations are in good agreement with the experimental results.  相似文献   

14.
电学层析成像是一种观测场域内电导率分布的无损检测技术。有限元法是求解电学层析成像问题的常用方法。其作为线性化的近似方法,剖分单元的大小会影响有限元法求解的精度。更密的尺寸可以提高重建图像的空间分辨率,但会增加计算成本,同时未知量个数的增加会加剧逆问题的欠定性。针对上述问题,提出一种基于图像梯度的自适应网格生成方法。根据初始重建图像的梯度,自适应地提高内含物区域的网格密度,降低其他区域的网格密度,并对场域边界进行精确拟合来优化被测场域的网格剖分。通过仿真与实验研究对比分析了所提方法与常用网格剖分方法。结果表明,所提方法的重建结果图像误差平均降低15%,相关系数平均提高7%,因此所提方法在不显著增加或减少网格数的情况下,可以有效提高内含物的重建精度和图像重建质量。  相似文献   

15.
Direct methods in real and reciprocal space are developed for structural reversion. The direct method in real space involves the use of a novel method to retrieve the phase in the image plane using transport of intensity equation/maximum entropy method (TIE/MEM) and exit wave reconstruction by self-consistent propagation. Since the exit wave is restored from the complex signal in the image planes, no image model between the exit wave and image is assumed. The structural information in the reconstructed exit wave is then further extended by a "complex" maximum entropy method as a direct method in reciprocal space to extrapolate the phase to higher frequencies.  相似文献   

16.
Illumination variation and geometric distortion within a scan of a bound book page are well known image quality problems. The degradation of the scanned image is caused by the book page not being in uniform intimate contact with the scanning surface of the scanner. A system that corrects for those artifacts within scanned book page will be presented. In the proposed system, illumination data is first acquired through a sampling window having a long and thin geometry. From the data, foreground and background illumination distributions are defined and a spatially varying illumination gain factor is generated to normalize the illumination across the book page. The extracted illumination variation is then used to estimate the distance between book page and the scanning surface through an illumination model. Once the distance at each pixel position is determined, the optical magnification ratio at the pixel position is calculated. Based on this magnification ratio, a dewarping factor can be determined and used to locally rescale and resample the scanned image to compensate for the geometric distortion. Compared to the original scanned image, the processed image of a book page possesses a more pleasing appearance, and is easier to read and further process for purposes such as OCR.  相似文献   

17.
ERT传感器结构研究与优化设计   总被引:4,自引:1,他引:3  
对ERT传感器主要参数——电极数目、电极宽度、电极高度和数据采集模式对系统性能的影响进行了仿真研究和分析,指出单独改变某一参数会使系统性能有所改善,但不能得到全局最优结果,因此需要对ERT传感器的多参数进行综合优化设计。将重建图像误差综合为重建图像质量作为优化传感器的目标函数,采用计算机有限元仿真与正交试验相结合的优化设计方法。研究表明该方法可有效地改善重建图像的总体质量,通过对传感器结构的优化,重建图像的总体质量可提高5%。  相似文献   

18.
研究光学全息的数字模拟,探讨数字全息的数字重构方法,以菲涅耳衍射积分的实现方法为基础,采用MATLAB软件实现菲涅耳全息图的数字记录和数字重构模拟,给出模拟结果.利用离散菲涅耳衍射积分方法完成数字全息图的数字重构.利用数字图像处理方法对所得的数字全息图进行适当滤波处理,有利于消除零级像和孪生像,获得清晰的数字再现像.引入全息变换,根据全息图的不可撕毁性,研究了全息变换在数字图像压缩中的应用,对给定的二值化图像实现压缩存储及解压缩处理.  相似文献   

19.
Annular dark-field (ADF) imaging in a scanning transmission electron microscope results in direct structure images of the atomic configuration of the specimen. Since such images are almost perfectly incoherent they can be treated as a convolution between a point-spread function, which is simply the intensity of the illuminating electron probe, and a sharply peaked object function that represents the projected structure of the specimen. Knowledge of the object function for an image region of perfect crystal allows the point-spread function to be directly determined for that image. We examine how the object function for an image can then be reconstructed using a Wiener filter, the CLEAN algorithm and a maximum entropy reconstruction. Prior information is required to perform a reconstruction, and we discuss what nature of prior information is suitable for ADF imaging.  相似文献   

20.
最小交叉熵图像重建算法   总被引:2,自引:1,他引:1  
CT技术通过扫描和图像重建算法,获取被检物场断层图像.由于具有非侵入性、可视化等特点,该技术在工业领域获得广泛应用.为了提高CT系统重建图像的分辨率,提出一种信息扩充策略,并以此为基础采用两种最小交叉熵算法--MAP和SMART,对多相流CT系统进行图像重建.与传统ART算法相比,最小交叉熵算法有效提高了重建图像的分辨率,减少重构图像伪影.仿真和实验结果表明,基于信息扩充的SMART算法不仅改进了重建图像质量,而且提高了实时性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号