首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new measurement technique of prosthesis wear by microscratching has been demonstrated. The technique has been applied in a study of the backside wear of a UHMW polyethylene tibial insert of a rotating platform knee prosthesis. Four disc-shaped UHMW polyethylene plugs, prepared with 5-μm deep microscratches, were carefully recessed into the backside of the tibial insert. It was demonstrated that the scratches are not affected by creep under static load. A realistic in vitro wear simulation experiment was performed over 0.8 × 106 flexion cycles. SEM and AFM show that following the experiment the initial microscratches are effectively absent in all four locations with only residual depressions observed. This implies that typically at least 5 μm of polyethylene material was worn over the first 0.8 × 106 cycles by processes other than creep. Evidence from AFM and SEM indicates the in-fill and reintegration of polyethylene wear particles into residual scratch depressions. This supports a two-phase model of the wear process that has been independently confirmed by radioisotope tracing. For an initial wear-in phase, the model implies large, but rapidly decreasing, wear, resulting from abrasive wear and a competition between the loss and the reintegration of wear particles. The in vitro wear-in of the backside may typically produce a wear debris volume of 8.5 mm3. In addition to wear-in, the model assumes a much lower, constant long-term wear rate. The model has been used to correct published backside wear rates for the effects of the wear-in phase. A best estimate of 0.7 mm3/106 cycles has been determined for the long-term in vitro backside wear rate of a tibial insert in a rotating platform design.  相似文献   

2.
Tests were performed on six large Kinemax Plus knee bearings (snap-fit design) to evaluate the amount of movement between 10- and 15-mm-thick tibial inserts and the tibial base plates. The knee bearings were tested up to 1 x 10(6) cycles on the Durham six-station knee wear simulator which subjected the bearings to similar motion and loading profiles that would be experienced by the natural knee during walking. Although passive internal/external (I/E) rotation was allowed, no active I/E rotation was applied. The movement of the tibial inserts was measured with dial gauges (accuracy +/-0.01 mm) before and after the bearings were tested on the simulator, when unloaded, and throughout the tests while the bearings were being dynamically loaded in the simulator. Movement occurred between the tibial insert and the tibial base plate after initial assembly due to the snap-fit mechanism used to locate the tibial insert within the tibial base plate. However this decreased appreciably when the bearings were loaded in the simulator. The amount of movement did not change with time when the bearings were continuously loaded in the simulator. However, after each test the amount of movement of the tibial inserts, when unloaded, was only 65 per cent (anterior-posterior) and 46 per cent (medial-lateral) of the values before the test. This was thought to be due to creep of the ultra-high molecular weight polyethylene (UHMWPE) inserts. The movement between the tibial insert and tibial base plate in situ is likely to be much less than that observed by a surgeon at the time of assembly due to loading of the knee bearing in the body. However, the amount of movement when the tibial inserts are loaded may still be great enough to produce a second interface where wear of the tibial insert may take place.  相似文献   

3.
Two semi-quantitative grading methods (referred to as the Hood/Wasielewski-method and the Modified-method) were described and then applied to 52 retrieved tibial polyethylene inserts from modular total knee replacements. Their ability to assess backside surface damage was compared. The damage score correlation with the implantation period greater than 24 months was better using the Modified-method (R=0.524, p=0.006) than using the Hood/Wasielewski-method (R=0.328, p=0.102). Also, the Modified-method gave significantly higher damage scores for males with gamma-in-air irradiated polyethylene inserts whereas the Hood/Wasielewski-method did not. Thus, the damage score obtained using the Modified-method seemed to provide a better representation of clinical surface damage and possibly PE wear.  相似文献   

4.
A computational model to predict polyethylene wear in modular total knee replacements was developed. The results from knee simulator wear tests were implemented with finite element simulations to identify the wear factors of Archard's wear law. The calculated wear factor for the articular and backside surface was 1.03±0.22×10−7 mm3/Nm and 2.43±0.52×10−10 mm3/Nm, respectively. The difference in wear factors was attributed to differences in wear mode and wear mechanisms between the articular (mainly two-body rolling/sliding wear mode with an abrasive/adhesive wear mechanism) and the backside surfaces (mainly fretting wear mode with an adhesive wear mechanism).  相似文献   

5.
The wear phenomenon of ultra-high molecular weight polyethylene (UHMWPE) in knee and hip prostheses is one of the major restriction factors on the longevity of these implants. Especially in retrieved knee prostheses with anatomical design, the predominant types of wear on UHMWPE tibial components are delamination and pitting. These fatigue wear patterns of UHMWPE are believed to result from repeated plastic deformation owing to high contact stresses. In this study, the elasto-plastic contact analysis of the UHWMPE tibial insert, based on geometrical measurement for retrieved knee prosthesis, was performed using the finite element method (FEM) to investigate the plastic deformation behaviour in the UHMWPE tibial component. The results suggest that the maximum plastic strain below the surface is closely related to subsurface crack initiation and delamination of the retrieved UHMWPE tibial component. The worn surface whose macroscopic geometrical congruity had been improved due to wear after joint replacement showed lower contact stress at macroscopic level.  相似文献   

6.
The micromotion at the interface between the polyethylene tibial insert and metal tibial tray [corrected] in modular total knee replacements [corrected] has been shown to contribute to wear particle-induced osteolysis and may [corrected] cause implant failure. Therefore, studying the design parameters that are involved in the backside wear process is an important task that may lead to improvement in new total knee replacements. In the present study, a finite element model was developed to predict the backside micromotion along the entire modular interface. Both the linear elastic constitutive model and non-linear J2-plasticity constitutive model were considered in the finite element model for polyethylene and were corroborated against published results obtained from displacement controlled knee simulator wear tests. The finite element simulation with the non-linear J2-plasticity constitutive model was able to predict backside micromotion [corrected] more accurately than the simulation with the linear elastic constitutive model. [corrected] The developed finite element model (including the non-linear J2-plasticity constitutive model) was then applied to assess the effects of the tibial tray locking mechanism design (dovetails versus fullperipheral [corrected] design) and different levels of interference fit on insert micromotion. The developed finite element model, implementing the non-linear J2-plasticity constitutive model, was shown to successfully predict clinical amounts of backside micromotion and could be used for the design and development of total knee replacements for the reduction of backside micromotion and polyethylene [corrected] wear.  相似文献   

7.
This paper investigates the elastic modulus and hardness of untreated and treated compression-moulded ultra-high molecular weight polyethylene (UHMWPE) tibial inserts of a total knee replacement (TKR) prosthesis. Investigations were carried out at a nanoscale using a Nanoindenter at penetration depths of 100,250 and 500 nm. The nanomechanical properties of surface and subsurface layers of the compression-moulded tibial inserts were studied using the untreated UHMWPE. The nanomechanical properties of intermediate and core layers of the compression-moulded tibial insert were studied using the cryoultrasectioned and etched UHMWPE treated samples. The cryoultrasectioning temperature (-150 degrees C) of the samples was below the glass transition temperature, Tg (-122 +/- 2 degrees C ), of UHMWPE. The measurement of the mechanical response of crystalline regions within the nanostructure of UHMWPE was accomplished by removing the amorphous regions using a time-varying permanganic-etching technique. The percentage crystallinity of UHMWPE was measured using differential scanning calorimetry (DSC) and the Tg of UHMWPE was determined by dynamic mechanical analysis (DMA). Atomic force microscopy (AFM) was used to assess the effect of surface preparation on the samples average surface roughness, Ra. In this study, it was demonstrated that the untreated UHMWPE samples had a significantly lower (p < 0.0001) elastic modulus and hardness relative to treated UHMWPE cryoultrasectioned and etched samples at all penetration depths. No significant difference (p > 0.05) in elastic modulus and hardness between the cryoultrasectioned and etched samples was observed. These results suggest that the surface nanomechanical response of an UHMWPE insert in a total joint replacement (TJR) prosthesis is significantly lower compared with the bulk of the material. Additionally, it was concluded that the nanomechanical response of material with higher percentage crystallinity (67 per cent) was predominantly determined by the crystalline regions within the semi-crystalline UHMWPE nanostructure.  相似文献   

8.
A loading protocol approximating forces, torques and motions at the knee during stair descent was developed from previously published data for input into a force-controlled knee simulator. A set of total knee replacements (TKRs) was subjected to standard walking cycles and stair descent cycles at a ratio of 70: 1 for 5 million cycles. Another set of implants with similar articular geometry and the same ultra-high molecular weight polyethylene (UHMWPE) resin (GUR 415), sterilization and packaging was tested with standard walking cycles only. Implant kinematics, gravimetric wear and surface roughness of the UHMWPE inserts were analysed for both sets of implants. Contact stresses were calculated for both loading protocols using a Hertzian line contact model. Significantly greater weight loss (p < 0.05) and more severe surface damage of UHMWPE inserts resulted with the walking + stair descent loading protocol compared to walking cycles only. Anterior-posterior (AP) tibiofemoral contact point displacements were lower during stair descent than walking, but not significantly different (p = 0.05). Contact stresses were significantly higher during stair descent than walking, owing to higher axial loads and the smaller radius of curvature of the femoral components at higher flexion angles. High contact stresses on UHMWPE components are likely to accelerate the fatigue of the material, resulting in more severe wear, similar to what is observed in retrieved implants. Thus the inclusion of loading protocols for activities of daily living in addition to walking is warranted for more realistic in vitro testing of TKRs.  相似文献   

9.
Degradation of tibial inserts in vivo has been found to be multifactorial in nature, resulting in a complex interaction of many variables. A range of kinematic conditions occurs at the tibio-femoral interface, giving rise to various degrees of rolling and sliding at this interface. The movement of the tibio-femoral contact point may be an influential factor in the overall wear of ultra-high molecular weight polyethylene (UHMWPE) tibial components. As part of this study a three-station wear-test machine was designed and built to investigate the influence of rolling and sliding on the wear behaviour of specific design aspects of contemporary knee prostheses. Using the machine, it is possible to monitor the effect of various slide roll ratios on the performance of contemporary bearing designs from a geometrical and materials perspective.  相似文献   

10.
Ultra-high molecular weight polyethylene (UHMWPE) is a common bearing component in total knee replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. This study hypothesized that in TKR systems, a highly cross-linked (HXL) UHMWPE blended with vitamin E will result in reduced wear as compared to a direct compression-moulded (DCM) UHMWPE. A wear simulation study was conducted using an asymmetric lateral pivoting '3D Knee' design to compare the two inserts. The highly cross-linked UHMWPE was aged prior to the testing and force-controlled wear testing was carried out for 5 million cycles using a load-controlled ISO-14243 standard at a frequency of 1 Hz on both groups. Gravimetric measurements of DCM UHMWPE (4.4 +/- 3.0 mg/million cycles) and HXL UHMWPE with vitamin E (1.9 +/- 1.9 mg/million cycles) showed significant statistical differences (p < 0.01) between the wear rates. Wear modes and surface roughness for both groups revealed no significant dissimilarities.  相似文献   

11.
Fluid adsorption and the associated mass gain behaviour in tibial inserts of total knee replacements was investigated in polyethylene (PE) manufactured from extruded GUR 1050 resin. Repeatedly removing the PE inserts from the soak fluid for gravimetric assessment (including cleaning, desiccation, and weighing) increased the mass gain. Soaking PE inserts for 46 days or 92 days seemed to give about the same mass gain. PE inserts that were soaked at 37 degrees C gained more mass than PE inserts soaked at room-temperature. Gas-plasma sterilized PE inserts gained less mass than gamma-in-air sterilized PE inserts. No statistically significant differences were detected in mass gain between PE inserts that were of 10mm and 14mm thickness. The mass gain of PE inserts was higher in protein-rich soak fluid compared with low-ion distilled water. Prior to knee simulator wear testing, tibial PE inserts should be conditioned in the same medium and under the same test conditions (gravimetric assessment frequency, fluid protein content, and fluid temperature). This approach would help improve the accuracy and precision of the gravimetrically determined PE wear rate during knee simulator wear testing.  相似文献   

12.
Abstract

The ASTM standard F732-00, 'standard test method for wear testing of polymeric materials used in total joint prostheses' offers several pieces of data against which a test rig for such biopolymers can be validated. These conditions include a linear wear in the range from 0˙07 to 0˙2 mm/million cycles for ultrahigh molecular weight polyethylene (UHMWPE), and a wear rate ranking of poly tetra fluoro ethylene (PTFE)>>polyacetal≥UHMWPE. Using a modified pin on plate wear test rig, these three biopolymers were tested under a 40 N load against polished stainless steel plates while using dilute bovine serum heated to 37°C as the lubricant. When subject to multidirectional motion, mean wear factors of 37×10–6 mm3 Nm–1 for PTFE, 3˙8×10–6 mm3 Nm–1 for polyacetal and 1˙1×10–6 mm3 Nm–1 for UHMWPE were obtained. Therefore the wear ranking recommended by the ASTM standard was achieved. When the corrected mean weight loss of the UHMWPE test pins was converted to a linear wear rate, a value of 0˙12 mm/million cycles was obtained. Therefore the ASTM recommended target for linear wear rate was met. When the wear factors from the test materials were compared with clinical wear factors of 37×10–6 mm3 Nm–1 for PTFE, 3˙5×10–6 mm3 Nm–1 for polyacetal and 0˙95– 1˙45×10– 6 mm3 Nm–1 for UHMWPE, good correspondence between in vivo and in vitro wear factors was obtained, further validating the modified pin on plate wear test rig.  相似文献   

13.
The entrapment of abrasive particles within the articulation between a cobalt chromium alloy (CoCrMo) femoral component and an ultra-high molecular weight polyethylene (UHMWPE) cup of artificial hip joints or tibial inserts of artificial knee joints usually scratches the metallic bearing surface and consequently increases the surface roughness. This has been recognized as one of the main causes of excessive polyethylene wear, leading to osteolysis and loosening of the prosthetic components. The purpose of this study was to use the finite element method to investigate the resistance of the cobalt chromium alloy bearing surface to plastic deformation, as a first approximation to causing scratches, due to various entrapped debris such as bone, CoCrMo and ZrO2 (contained in radiopaque polymethyl methacrylate cement). A simple axisymmetric micro contact mechanics model was developed, where a spherical third-body wear particle was indented between the two bearing surfaces, modelled as two solid cylinders of a given diameter, under the contact pressure determined from macro-models representing either hip or knee implants. The deformation of both the wear particle and the bearing surfaces was modelled and was treated as elastic-plastic. The indented peak-to-valley height on the CoCrMo bearing surface from the finite element model was found to be in good agreement with that reported in a previous study when the third-body wear particle was assumed to be rigid. Under the physiological contact pressure experienced in both hip and knee implants, ZrO2 wear particles were found to be fully embedded within the UHMWPE bearing surface, and the maximum von Mises stresses within the CoCrMo bearing surface reached the corresponding yield strength. Consequently, the CoCrMo bearing surface was deformed plastically and the corresponding peak-to-valley height (surface roughness) was found to increase with both the hardness and the size of the wear particle. Even in the case of CoCrMo wear particles, with similar mechanical properties to those of the CoCrMo bearing surface, a significant plastic deformation of the bearing surface was also noted; this highlighted the importance of considering the deformation of the wear particles. These findings support the hypotheses made by clinical studies on the contribution of entrapped debris to increased surface roughness of CoCrMo femoral bearing surfaces.  相似文献   

14.
Fourteen pairs of explanted low contact stress (LCS) tibial interface components: six rotating platform (RP), six meniscal (MN) and two anterior-posterior (AP) glide designs, have been analysed with particular attention paid to the condition of the tibial counterfaces. The average surface roughness, Ra, for the tibial trays ranged from 0.01 to 0.087 micron, significantly greater than the unworn control measurement of 0.008 micron. The scratch geometry analysis showed that the scratch peaks were found to be consistently of a lower aspect ratio than the scratch valleys and under 1 micron in height (average asperity height Rp = 0.52 micron, aspect ratio delta p = 0.01, average asperity depth Rv = 1.10 microns, delta v = 0.05). The largest scratches were 3-4 microns in both Rp and Rv. In vitro tests have shown that ultra-high molecular weight polyethylene (UHMWPE) wear increases in the presence of counterface scratches perpendicular to the direction of motion. In these explants, the unidirectional motion produced scratches parallel to the direction of sliding which is predicted to produce a smaller increase in UHMWPE wear. Other designs in mobile bearing knees have less constrained motion at the tibial counterface and this has been shown to accelerate wear; it may also lead to a further increase in wear in the presence of third body scratches. It may be possible in future knee designs to reduce this type of wear damage by introducing alternative materials or coatings which are more resistant to scratching and surface roughening.  相似文献   

15.
In this investigation, the influence of test speed and applied pressure values on the friction and wear behaviour of polyamide 66 (PA 66), polyoxymethylene (POM), ultrahigh molecular weight polyethylene (UHMWPE), 30% glass fibre reinforced polyphenylene-sulfide (PPS+30%GFR) and aliphatic polyketone (APK) polymers were studied. Friction and wear tests of PA 66, POM, UHMWPE, PPS+30%GFR and APK versus AISI D2 steel were carried out at dry condition on a pin-on-disc arrangement. Tribological tests were performed at room temperature at different pressures (0.35–1.05 MPa) and sliding speeds (0.5–2.0 m/s). The results showed that, for all polymers used in this investigation, the coefficient of friction decreases linearly with the increase in pressure. The specific wear rate for UHMWPE, PPS+30%GFR and APK were in the order of 10−5 mm3/N m, while the wear rate value for PA 66 was in the order of 10−6 mm3/N m. In addition to this, the wear rate value for POM was in the order of 10−3 mm3/N m. Furthermore, as the results of this investigation, the wear rate showed very little sensitivity to the applied pressures and test speed.  相似文献   

16.
D. Dowson  R.T. Harding 《Wear》1982,75(2):313-331
In recent years there has been growing interest in the use of high density alumina ceramic material for the femoral ball in association with ultrahigh molecular weight polyethylene (UHMWPE) for the acetabular component in total replacement hip joints.The wear characteristics of UHMWPE pins sliding against a high density alumina ceramic disc in the presence of distilled water in a tri-pin-on-disc machine have been revealed in very long-term experiments reported in this paper. A total sliding distance in excess of 6000 km was achieved and very low mean wear coefficients of the order of 10?8 mm3 N?1 m?1 were recorded.Experiments were also carried out over a shorter sliding distance under dry conditions and the average wear coefficient of 2 × 10?7mm3N?1m?1 was consistent with earlier findings. In these dry tests, comet-like streaks of polyethylene were transferred to the ceramic counterface, but no such transfer was noted during the wet tests. When distilled water was added to the test chamber after a considerable period of dry sliding, the wear coefficient rapidly decreased to about 10?8 mm3 N?1 m?1 and the streaky transfer film disappeared from the ceramic counterface.The possibility of hydrodynamic action between the wear face on the pins and the counterface was investigated by reversing the direction of sliding. Surface topography changes on both the pins and the discs and friction and bulk temperatures of the pins were recorded throughout the tests.It is concluded that the excellent dry wear coefficients of UHMWPE sliding on alumina ceramic counterfaces are about twenty times greater than those experienced by the same materials in the presence of distilled water. The tribological advantage of the ceramic with respect to stainless steel having a similar surface roughness has been confirmed in dry sliding involving UHMWPE, but further work is required to determine whether or not the same advantage can be achieved under wet conditions.  相似文献   

17.
《Wear》2007,262(3-4):331-339
The use of artificial joints for the treatment of degenerative diseases of the hip and knee is becoming more widespread as life expectancy increases. Because of the latter, there is also the need for joints of higher durability than the commonly used artificial joints with ultra-high molecular weight polyethylene (UHMWPE) articulating against a metallic counterface. This requires the use and testing of novel materials. Relatively inexpensive and effective screening devices that would allow investigators to rapidly characterize the wear behavior of such materials are thus needed. This paper reports the design and development of a Dual Axis Wear Simulator (DAWS) to screen materials for wear behavior in a simulated in vivo environment. The machine allows for direct control of the applied normal load and the two-dimensional wear path shape of the pin against a cylindrical counterface. With this new machine, the effects of wear path shape and applied load were investigated. A 39 N load coupled with a 6.4-mm square wear path was shown to produce wear amounts comparable to those from other screening devices and also from artificial hips retrieved after in vivo use. The results further showed the importance of multidirectional sliding motion and a trend for higher wear rates as the aspect ratio of the wear path was increased. The wear rate of polytetrafluoroethylene was found to be orders of magnitude higher than that of UHMWPE, while that of polyacetal was somewhat lower. The development and use of compliant materials that simulate the mechanical properties of natural articular cartilage will likely lengthen the pain-free lifetimes of artificial joints. In view of this, the elastomeric polyurethane Pellethane™ 2363-80A, which is currently used in non-orthopedic biomedical applications, was tested for wear and its wear rate was found to be much lower than that of UHMWPE, likely due to its ability to conform to the counterface and thus reduce the contact pressure. This investigation showed the DAWS to be an effective wear simulator for the screening of new biomaterials for use in artificial joints and will be useful in the development of such joints.  相似文献   

18.
In vivo fluoroscopic studies of patients with total knee replacements (TKRs) have shown lift-off of the femoral condyles from the tibial insert. This study investigated the influence of femoral condylar lift-off on the ultra-high molecular weight polyethylene (UHMWPE) wear of fixed bearing (FB) and rotating platform mobile bearing (RP MB) total knee replacements, using a physiological knee joint simulator. In the absence of lift-off, the RP MB knees exhibited a lower wear rate of 5.2 +/- 2.2 mm3 per million cycles (mm3/MC) compared with 8.8 +/- 4.8 mm3/MC for the FB knees. The presence of femoral condylar lift-off was found to accelerate the wear of the FB and RP MB knees tested in this study to 16.4 +/- 2.9 and 16.9 +/- 2.9 mm3/MC respectively. For the RP MB knees the increase in wear rate was more marked, resulting in a similar wear rate for both designs of knee under lift-off conditions. In both cases the medial condyle displayed more wear damage. This study has shown that a small amount of abduction/adduction lift-off and medial-lateral shift increases wear and that the increase in wear is design dependent. In this simulator test, lift-off was simulated on every cycle, whereas the amount of wear and effect of lift-off clinically would depend on the frequency of occurrence of lift-off in vivo.  相似文献   

19.
One of the important design parameters in current knee joint replacements is the thickness of the ultra-high molecular weight polyethylene (UHMWPE) tibial insert, yet there is no clear definition of the upper limit of the 'thick' polyethylene insert. Using one design knee implant and subjecting it to the physiological loads encountered throughout the gait cycle, measurements of the lengths of contact imprints generated were compared with the corresponding theoretical predictions for different insert thicknesses under the same applied load. Multiple regression analysis was applied to test whether the dimensions of contact imprints are influenced by UHMWPE thickness. Good agreement was obtained between the theoretical predictions and the experimental measurements of the dimensions of contact imprints when the knee was at 60 degrees flexion. Therefore, it was possible to estimate the contact pressure at the articulating surface using the theoretical model. Contact imprint dimensions increased with increasing applied load. Statistical analysis of the experimental data revealed that, at 0 degree flexion, the overall imprint dimensions increased as the UHMWPE thickness increased from 8 to 20 mm. However, the increment was not significant when the thickness subinterval 10-15 mm was considered. Furthermore, at 60 degrees flexion, thickness was not a significant factor for the overall imprint dimensions. No evidence was found from the data to suggest that an increment in polyethylene thickness over 10 mm would significantly reduce the contact imprint dimensions. These findings suggest that thicker inserts can be avoided, as they require unnecessary bone resection.  相似文献   

20.
It is known that wear mechanisms differ between the ultra-high molecular weight polyethylene (UHMWPE) components of total hip replacement (THR) and total knee replacement (TKR). The difference in relative contact position or 'kinematic conditions of contact' between the metal and polymer components is thought to contribute to the contrast in observed wear mechanisms. A reciprocating wear tester was used to evaluate three basic kinematic contact conditions: sliding, in which the relative contact position on the polymer remains stationary; gliding, where the contact position on the polymer reciprocates; and rolling, where the contact position on the polymer varies and the relative velocities of both components are equal. All static load tests used cast Co-Cr alloy and irradiated Chirulen UHMWPE in a 37 degrees C environment lubricated with bovine serum albumin. UHMWPE test sample wear was measured gravimetrically at intervals of 600,000 cycles. The results indicated a difference in wear factor (volume lost due to wear per unit load per unit sliding distance) between the three groups with varying relative motion. The study indicates that screening tests which evaluate wear properties of new materials for total joint replacement should reflect the different kinematic contact conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号