首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the synergistic effects of graphene nanosheets (GNSs) and carbon fibers (CFs) additions on the electrical and electromagnetic shielding properties of GNS/CF/polypropylene (PP) composites. These composites were fabricated by the melt blending of different ratios of GNSs and CFs (20:0, 15:5, 10:10, 5:15 and 0:20 wt/wt%) into a PP polymer matrix using a Brabender mixer. Besides, the chemical and crystalline structures and the thermal stability of the resultant GNS/CF/PP composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). FT-IR and XRD showed that with the addition of GNSs content, transmittances at 1373.4?cm?1 and 1454.4?cm?1 became smaller and the characteristic peak at 26.82° became stronger. TGA showed that the GNS/CF/PP composite can be used at high temperature below 456°C. Blending 10?wt% CFs and 10?wt% GNSs into the PP polymer resulted in excellent conductivity (0.397 S/cm), which indicated the occurrence of the critical percolation threshold phenomenon, and also reached the maximum electromagnetic shielding effectiveness (EMSE) of 20?dB at 1.28–2.00?GHz. Laminated with five layers of composites, its EMSE achieved 25–38?dB at 0.3–3.0?GHz, corresponding to blocking of 94.38–98.74% electromagnetic waves.  相似文献   

2.
The microstructure and fracture performance of an anhydride-cured epoxy polymer modified with two poly(styrene)-b-1,4-poly(butadiene)-b-poly(methyl methacrylate) (SBM) block copolymers were investigated in bulk form, and when used as the matrix material in carbon fibre reinforced composites. The ‘E21’ SBM block copolymer has a higher butadiene content and molecular weight than the ‘E41’. A network of aggregated spherical micelles was observed for the E21 SBM modified epoxy, which became increasingly interconnected as the SBM content was increased. A steady increase in the fracture energy was measured with increasing E21 content, from 96 to 511 J/m2 for 15 wt% of E21. Well-dispersed ‘raspberry’-like SBM particles, with a sphere-on-sphere morphology of a poly(styrene) core covered with poly(butadiene) particles, in an epoxy matrix were obtained for loadings up to 7.5 wt% of E41 SBM. This changed to a partially phase-inverted structure at higher E41 contents, accompanied by a significant jump in the measured fracture energy to 1032 J/m2 at 15 wt% of E41. The glass transition temperatures remained unchanged with the addition of SBM, indicating a complete phase separation. Electron microscopy and cross polarised transmission optical microscopy revealed localised shear band yielding, debonding and void growth as the main toughening mechanisms. Significant improvements in fracture energy were not observed in the fibre composites, indicating poor toughness transfer from the bulk to the composite. The fibre bridging observed for the unmodified epoxy matrix was reduced due to better fibre–matrix adhesion. The size of the crack tip deformation zone in the composites was restricted by the fibres, hence reducing the measured fracture energy compared to the bulk for the toughest matrix materials.  相似文献   

3.
In this study, the effects of filler geometry on the electrical conductivity and electromagnetic interference (EMI) shielding properties of poly(trimethylene terephthalate) (PTT) composites filled with graphene nanosheets (GNSs), carbon nanotubes (CNTs), and GNS–CNT hybrid nanofillers have been investigated. The GNSs, CNTs, and hybrid GNS–CNT were well dispersed in the PTT matrix using a simple coagulation process. GNSs were prepared from graphene oxide (GO) through hydrazine reduction, and thermal reduction of GO at two different temperatures of 1050 and 1500 °C. PTT filled with different aspect ratios and oxygen functional groups of GNS were also prepared in order to compare the electrical conductivity and EMI shielding properties. The aspect ratios of GNSs and CNTs were estimated by using an ellipsoid model. Percolation scaling laws were applied to the magnitudes of conductivity to reveal the percolation network and filler dispersion. The percolation exponent of the PTT/GNS composites was larger than that of the PTT/CNT composites. The percolated filler–filler network at which the percolation exponent changed was correlated with the filler geometric structure. GNS–CNT hybrid nanofillers formed a complex double brush structure in the PTT/GNS–CNT composites. The geometric structure, aspect ratio, and intrinsic conductivity of carbon nanofillers affected the electrical percolation threshold and EMI shielding efficiency of the composites.  相似文献   

4.
We developed highly aligned graphene nanosheets (GNSs) in epoxy composites with incorporating magnetic GNS–Fe3O4 hybrids under a magnetic field with the aim to take full advantage of the high inplane thermal conductivity of graphene. GNS–Fe3O4 hybrids were fabricated by a simple coprecipitation method, and their morphology, chemistry, and structure were characterized. GNS–Fe3O4 hybrids were found to be homogenously dispersed and well aligned through the direction of the magnetic field in the epoxy matrix, as confirmed by SEM observation and Raman spectra analysis. The resulting epoxy/GNS–Fe3O4 composites possessed high thermal conductivity in a parallel magnetic-alignment direction at low GNS–Fe3O4 loadings, which greatly outperformed the composites with randomly dispersed bare GNSs. The obtained results indicated that the magnetic alignment of magnetic-functionalized GNSs is an effective way for greatly improving the thermal conductivity of the graphene-based composites.  相似文献   

5.
Different weight fractions of aluminum (Al) powder viz., 10, 20, 30, 40, 50, 60 and 70 phr were incorporated into styrene butadiene rubber (SBR) matrix. The Al powder filled and vulcanized SBR composites have been characterized for mechanical properties such as tensile strength, tensile modulus and surface hardness. A drastical improvement in tensile strength and tensile modulus with increase in filler content of the composites was noticed. The electrical properties such as dielectric constant, tan delta and dielectric loss were measured for all the four compositions. The effect of volume fraction (0–70 phr) of conducting filler, frequency (100 kHz–30 MHz), temperature (25–75°C) and relative humidity on dielectric constant, dielectric loss and tan delta values of the composites were studied.  相似文献   

6.
Functionalized graphene oxide (FGO) was produced by reacting graphene oxide nanosheets with vinyl trimethoxy silane (VTMS). The results confirmed the attachment of VTMS molecules to the surface of GO sheets by Si–O–C bonding. The introduction of VTMS molecules led to an excellent dispersibility in tetrahydrofuran and to the complete exfoliation of FGO with a thickness of about 1.19 nm. Meanwhile, FGO/silicone polymer composites were prepared by solution blending method. The incorporation of 0.5 wt% of FGO in silicone polymer improved remarkably the thermal stability, tensile strength, and thermal conductivity of the silicone polymer composite, due to the homogeneous dispersion of FGO in the composites as well as to the strong interfacial adhesion with silicone polymer matrix. Tensile strength and thermal conductivity of the FGO/silicone polymer composite were increased by 95.6 and 78.3 %, respectively, with the addition of 0.5 wt% FGO. The 5 % weight loss temperature of the composite at 0.5 wt% FGO loading was detected 26.1 °C higher than that of silicone polymer.  相似文献   

7.
This paper focuses on the use of styrene butadiene rubber (SBR) as a viscosity modifier in novel blends of natural rubber (NR) and dichlorocarbene modified styrene butadiene rubber (DCSBR). The processing characteristics, vulcanisation kinetics, stress-strain behaviour, mechanical properties and low temperature transition of the blends have been examined in order to analyse the influence of SBR in the blends. The change in cross-link density values from stress strain behaviour and equilibrium swelling data has been correlated with the technological properties of the blends. The excellent mechanical properties and the increased cross-link density in blends in the presence of 5—10 phr of styrene butadiene rubber reveals the viscosity modifying action of SBR in NR/DCSBR blends. The variation in viscosities of these blends with the addition of SBR is reflected in the DSC thermograms. The resulting blends show very high resistance to thermal ageing as compared to those without SBR.  相似文献   

8.
In this work, we report a methanol-facilitated approach to directly use aqueous Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) in the silver/epoxy composites for preparation of highly electrically conductive adhesives (ECAs) and an investigation of the interaction between PEDOT:PSS nano-gels and silver microflakes. PEDOT:PSS nano-gel (18?<?d?<?30 nm) aqueous dispersion is immiscible with epoxy resin and difficult to incorporate into the conventional silver-filled ECAs. To overcome this challenge, we used methanol to facilitate the dispersion of PEDOT:PSS and silver microflake in epoxy resin. The synergetic interactions between PEDOT:PSS and silver and the effect of methanol were investigated using dynamic light scattering (DLS), atomic force microscopy, Kelvin probe force microscopy, and scanning electron microscope. When PEDOT:PSS was exposed to methanol, its morphology changed from coil to coil/linear structure; the contact potential difference between silver microflake and PEDOT:PSS increased from 9.47 to 22.56 mV, showing an increased conductivity between PEDOT:PSS and silver microflake. It was found that the introduction of a small amount of PEDOT:PSS (0.1 wt%) to the conventional ECA with 60 wt% silver microflake remarkably improved the electrical conductivity from 104 to 386 S/cm. A significantly high conductivity of 2526 S/cm was achieved by further increasing the PEDOT:PSS concentration to 1 wt%. The impact of PEDOT:PSS on the adhesive bonding strength towards copper substrate was also examined; the bonding strength slightly decreased when <?1 wt% PEDOT:PSS was used, but abruptly dropped when PEDOT:PSS content was further increased beyond 1 wt%. The incorporation of the optimal 1 wt% PEDOT:PSS into conventional ECAs with 60% silver microflake greatly increased the electrical conductivities by 25 times with limited impact on the shear strength. The results provide insights to the synergetic interplay of conductive polymer and metallic fillers, and might have profound technical implications on the development of advanced conductive composites.  相似文献   

9.
This article reports the development, DC conductivity behavior of carbon soot filled polyester graded composites. Carbon soot filled polyester composites having 3 wt% of carbon soot powder and polyester resin were prepared. DC conductivity measurements were conducted on the graded composites by using an electrometer in the temperature range of 28°C to 150°C. DC conductivity increased with increase in carbon soot concentration in the composites; DC conductivity increased with the increase in temperature. Activation energy was calculated by using Arrhenius equation for graded samples exhibited electronic conduction. Linear dependence of pre-exponential factors on activation energy for carbon soot filled polyester graded composites reveals semi-conducting behavior of the composites.  相似文献   

10.
In-chain multi-functionalized random butadiene–styrene copolymer possessing definite dimethylamino groups along the polymer backbone, poly(butadiene-co-styrene-co-1,1-bis(4-dimethylaminophenyl)ethylene) (poly(Bd-co-St-co-BDADPE)), has been designed and synthesized via living anionic copolymerization of excess BDADPE with butadiene and styrene in benzene at 50 °C, using sec-butyllithium as initiator. The incorporation of BDADPE unit results in increases both in glass transition temperature and thermal decomposition temperature of the terpolymers. Such multiple dimethylamino groups along the rubber backbone effectively improve the dispersity of carbon black (CB) in the corresponding composites, as verified by scanning electronic microscopy observation. Also the tensile strength, elongation at break and the value of dynamic loss coefficient at 0 °C of the CB/poly(Bd-co-St-co-BDADPE) vulcanized composites, are significantly enhanced. This in-chain multi-functionalization of matrix rubber via anionic copolymerization employing BDADPE as copolymerizable monomer, provides a facile and effective method to prepare CB-based rubber composites with improved tensile strength and elongation at break, as well as good wet skid resistance.  相似文献   

11.
This study investigated the effects of core–shell kaolin–metal oxide pigments on the rheological, physico-mechanical and dielectric properties of styrene–butadiene rubber composites. In this way, newly prepared core–shell pigments based on kaolin as the core representing 90% of the whole pigment was covered with different metal oxides (CaO, MgO and CaO⋅MgO) comprising the shell which represents only 10% of the prepared pigments were incorporated with different concentrations in styrene–butadiene (SBR) rubber composites. Studying the different properties of pigmented and unpigmented SBR composites were done. Scanning electron microscopy (SEM) was used to feature out the surface morphology. Addition of the new pigments increased the tensile strength and strain energy, while elastic modulus was decreased. This study revealed that there is a significant effect of the new prepared pigments on SBR properties and the optimum pigment loading was 40 phr for CaO/kaolin, while it was 2.5 phr for MgO/kaolin. The dielectric results also showed that, the values of ε′ (relative permittivity) and ε′′ (dielectric loss) increased with increasing core shell content. Moreover, the samples containing MgO/kaolin and MgO⋅CaO/kaolin showed promising dielectric properties with low relative permittivity and electrical insulating properties. The different measurements showed good agreement in their results.  相似文献   

12.
Flake graphite-diamond/Cu–Cr–Zr composites with good two-dimensional thermophysical properties were prepared by vacuum hot-pressing technology. The influence and working mechanism of the hot-pressing temperature on the relative density and thermal conductivity of the composites were studied to obtain the optimum sintering process. The results showed that with a pressing pressure of 10 ~ 20 MPa, the relative density and thermal conductivity of the composite materials increased as the sintering temperature increased from 950 to 1010°C. When the temperature rose to 1010 ~ 1040°C, a near fully dense composite material was obtained and thermal conductivity reached maxima of 410 and 119 W/m K parallel and perpendicular to the graphite planes, respectively, both of which are close to the theoretical value. However, relative density and thermal conductivity drastically decreased as the temperature continued to increase beyond 1070°C. This is attributed to the combined effect of sintering temperature and wettability between the matrix and the reinforcements.  相似文献   

13.
提高轮胎胎面胶的抗干滑性能对提高汽车的安全驾驶性具有重要意义。文中应用平均粒径为160 nm的辐射交联型丁苯橡胶粒子(UFPSBR)制备了轮胎胎面胶用UFPSBR/天然橡胶(NR)/丁苯橡胶(SBR)复合材料。动摩擦系数实验、动态力学性能分析(DMA)和橡胶加工分析(RPA)等研究结果显示,与NR/SBR复合材料相比,15 phr UFPSBR粒子改性后的UFPSBR/NR/SBR复合材料的动摩擦系数增加了27%,同时,UFPSBR/NR/SBR复合材料在30℃的损耗因子(tanδ)值增大了30%,表明UFPSBR粒子具有显著提高轮胎胎面胶抗干滑性的作用。RPA研究结果发现,与NR/SBR复合材料在60℃时的tanδ值相比,UFPSBR/NR/SBR复合材料在60℃时的tanδ值显著降低,表明UFPSBR粒子也具有降低轮胎胎面胶滚动阻力的作用。  相似文献   

14.
方小林  宋俊  郑云波  任勇 《复合材料学报》2016,33(11):2426-2435
以膨胀蛭石为阻燃剂,采用中温发泡方法与酚醛树脂复合制备膨胀蛭石/酚醛阻燃保温复合材料。阻燃保温复合材料通过极限氧指数、锥形量热、导热系数和表观密度分析了发泡温度、固化剂含量、发泡剂含量、表面活性剂含量、固化时间以及蛭石含量对膨胀蛭石/酚醛阻燃保温复合材料阻燃及保温性能的影响。结果表明:以膨胀蛭石为阻燃剂制备的膨胀蛭石/酚醛阻燃保温复合材料的阻燃保温性能优越、表观密度低。单因素实验结果表明,膨胀蛭石/酚醛阻燃保温复合材料的最优条件为发泡温度80℃、固化剂含量10wt%、发泡剂含量10wt%、表面活性剂含量5wt%、固化时间2 h以及蛭石含量60wt%。最优条件下的膨胀蛭石/酚醛阻燃保温复合材料表观密度为190.08 kg/m3、压缩强度为0.32 MPa、导热系数为0.054 9 W/(m·K)、极限氧指数为71.1%、平均热释放速率为15 kW/m2。   相似文献   

15.
Intumescent flame retardant polyurethane (IFRPU) composites were prepared in the presence of reduced graphene oxide (rGO) as synergism, melamine, and microencapsulated ammonium polyphosphate. The composites were examined in terms of thermal stability (both under nitrogen and air), electrical conductivity, gas barrier, flammability, mechanical, and rheological properties. Wide-angle X-ray scattering and scanning electron microscopy indicated that rGO are well-dispersed and exfoliated in the IFRPU composites. The limiting oxygen index values increased from 22.0 to 34.0 with the addition of 18 wt% IFR along with 2 wt% rGO. Moreover, the incorporation of rGO into IFRPU composites exhibited excellent antidripping properties as well as UL-94 V0 rating. The thermal stability of the composites enhanced. This was attributed to high surface area and good dispersion of rGO sheets induced by strong interactions between PU and rGO. The oxygen permeability, electrical, and viscoelasticity measurements, respectively, demonstrated that rGO lead to much more reduction in the gas permeability (by ~90 %), high electrical conductivity, and higher storage modulus of IFRPU composites. The tensile strength, modulus, and shore A remarkably improved by the incorporation of 2.0 wt% of rGO as well.  相似文献   

16.
Acrylonitrile–butadiene–styrene (ABS)/ethylene–propylene–diene monomer (EPDM) composites reinforced with graphene nanoplatelets (GN) were fabricated by the direct melt blending, dried premixing and wet premixing process, respectively. The electrical resistivity, tensile strength, impact strength, microstructure, thermal stability, glass transition temperature and morphology of fracture surface of composites were investigated. In case of direct melt blending process, the maximum tensile strength with minimum impact strength is obtained. But this result is reversed while the fabrication of composites by wet premixing process. SEM results show that GN is prior to distributing in the continuous ABS phase. The percolation threshold could be significantly decreased from 11.8 wt% to 6.6 wt% when prepare composites by wet/dried premixing process instead of melt blending.  相似文献   

17.
通过超声分散制备了分散均匀的碳纳米管(CNTs)/天然橡胶母料,利用母料制备了天然橡胶(NR)/丁苯橡胶(SBR)/炭黑(CB)/碳纳米管复合材料。通过比较常规搅拌、双辊混炼和超声分散三种方法对碳纳米管的分散及对复合材料性能的影响,表明超声分散能实现碳纳米管在基体中均匀分散,CNTs和CB的协同作用提高了复合材料的力学性能,当CB/CNTs之比为37/3时力学性能最高,与未加CNTs增强的体系相比,拉伸强度提高了6.4%。当CNTs含量为7phr,与未加CNTs的体系相比,压缩模量提高了20%。  相似文献   

18.
为提高橡胶发泡材料尺寸稳定性及实现其广泛的工业化应用,基于硫磺和过氧化二异丙苯的交联体系,通过机械共混的方式,以具有结晶性的乙烯-醋酸乙烯共聚物(EVA)构筑有机支架结构,制备了高尺寸稳定性的丁苯橡胶(SBR)/EVA复合发泡材料.研究了不同醋酸乙烯(VA)含量的EVA对SBR/EVA复合材料结晶性、相容性、泡孔形貌、...  相似文献   

19.
Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10?6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.  相似文献   

20.
We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on ethanol-crossover and the proton conductivity for DEFC application. A set of PWA–Nafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns, permeability, and proton conductivity were systematically characterized. The significant reduction in ethanol-crossover is observed with increasing PWA concentration in PWA–Nafion membranes, which is mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. The proton conductivity of the composites is enhanced with PWA concentration until 15 wt% due to an increase in hopping pathways, while higher PWA of 20 wt% leads to a conductivity decrease possibly due to the excessive particle aggregations that limit ion transports. These PWA–Nafion composites were implemented in prototype DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号