首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new time-mode duty-cycle-modulation-based high-accuracy temperature sensor. Different from the well-known \({\varSigma }{\varDelta }\) ADC-based readout structure, this temperature sensor utilizes a temperature-dependent oscillator to convert the temperature information into temperature-related time-mode parameter values. The useful output information of the oscillator is the duty cycle, not the absolute frequency. In this way, this time-mode duty-cycle-modulation-based temperature sensor has superior performance over the conventional inverter-chain-based time domain types. With a linear formula, the duty-cycle output streams can be converted into temperature values. The design is verified in 65nm standard digital CMOS process. The verification results show that the worst temperature inaccuracy is kept within 1\(\,^{\circ }\mathrm{C}\) with a one-point calibration from \(-\)55 to 125 \(^{\circ }\mathrm{C}\). At room temperature, the average current consumption is only 0.8 \(\upmu \)A (1.1\(\,\upmu \)A in one phase and 0.5 \(\upmu \)A in the other) with 1.2 V supply voltage, and the total energy consumption for a complete measurement is only 0.384 \({\hbox {nJ}}\).  相似文献   

2.
A fractor is a simple fractional-order system. Its transfer function is \(1/Fs^{\alpha }\); the coefficient, F, is called the fractance, and \(\alpha \) is called the exponent of the fractor. This paper presents how a fractor can be realized, using RC ladder circuit, meeting the predefined specifications on both F and \(\alpha \). Besides, commonly reported fractors have \(\alpha \) between 0 and 1. So, their constant phase angles (CPA) are always restricted between \(0^{\circ }\) and \(-90^{\circ }\). This work has employed GIC topology to realize fractors from any of the four quadrants, which means fractors with \(\alpha \) between \(-\)2 and +2. Hence, one can achieve any desired CPA between \(+180^{\circ }\) and \(-180^{\circ }\). The paper also exhibits how these GIC parameters can be used to tune the fractance of emulated fractors in real time, thus realizing dynamic fractors. In this work, a number of fractors are developed as per proposed technique, their impedance characteristics are studied, and fractance values are tuned experimentally.  相似文献   

3.
Differential thermal analysis (DTA) has been conducted on directionally solidified near-eutectic Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC), SAC \(+\) 0.2 wt.%Sb, SAC \(+\) 0.2 wt.%Mn, and SAC \(+\) 0.2 wt.%Zn. Laser ablation inductively coupled plasma mass spectroscopy was used to study element partitioning behavior and estimate DTA sample compositions. Mn and Zn additives reduced the undercooling of SAC from 20.4\(^\circ \hbox {C}\) to \(4.9^\circ \hbox {C}\) and \(2^\circ \hbox {C}\), respectively. Measurements were performed at cooling rate of \(10^\circ \hbox {C}\) per minute. After introducing 200 ppm \(\hbox {O}_2\) into the DTA, this undercooling reduction ceased for SAC \(+\) Mn but persisted for SAC \(+\) Zn.  相似文献   

4.
In this paper a novel high-frequency fully differential pure current mode current operational amplifier (COA) is proposed that is, to the authors’ knowledge, the first pure MOSFET Current Mode Logic (MCML) COA in the world, so far. Doing fully current mode signal processing and avoiding high impedance nodes in the signal path grant the proposed COA such outstanding properties as high current gain, broad bandwidth, and low voltage and low-power consumption. The principle operation of the block is discussed and its outstanding properties are verified by HSPICE simulations using TSMC \(0.18\,\upmu \hbox {m}\) CMOS technology parameters. Pre-layout and Post-layout both plus Monte Carlo simulations are performed under supply voltages of \(\pm 0.75\,\hbox {V}\) to investigate its robust performance at the presence of fabrication non-idealities. The pre-layout plus Monte Carlo results are as; 93 dB current gain, \(8.2\,\hbox {MHz}\,\, f_{-3\,\text {dB}}, 89^{\circ }\) phase margin, 137 dB CMRR, 13 \(\Omega \) input impedance, \(89\,\hbox {M}\Omega \) output impedance and 1.37 mW consumed power. Also post-layout plus Monte Carlo simulation results (that are generally believed to be as reliable and practical as are measuring ones) are extracted that favorably show(in abovementioned order of pre-layout) 88 dB current gain, \(6.9\,\hbox {MHz} f_{-3\text {db}} , 131^{\circ }\) phase margin and 96 dB CMRR, \(22\,\Omega \) input impedance, \(33\,\hbox {M}\Omega \) output impedance and only 1.43 mW consumed power. These results altogether prove both excellent quality and well resistance of the proposed COA against technology and fabrication non-idealities.  相似文献   

5.
The results of an ab?initio modelling of aluminium substitutional impurity (\({\hbox {Al}}_{\rm Ge}\)), aluminium interstitial in Ge [\({\hbox {I}}_{\rm Al}\) for the tetrahedral (T) and hexagonal (H) configurations] and aluminium interstitial-substitutional pairs in Ge (\({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\)) are presented. For all calculations, the hybrid functional of Heyd, Scuseria, and Ernzerhof in the framework of density functional theory was used. Defects formation energies, charge state transition levels and minimum energy configurations of the \({\hbox {Al}}_{\rm Ge}\), \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) were obtained for ?2, ?1, 0, \(+\)1 and \(+\)2 charge states. The calculated formation energy shows that for the neutral charge state, the \({\hbox {I}}_{\rm Al}\) is energetically more favourable in the T than the H configuration. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) forms with formation energies of ?2.37 eV and ?2.32 eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) is energetically more favourable when the interstitial atom is at the T site with a binding energy of 0.8 eV. The \({\hbox {I}}_{\rm Al}\) in the T configuration, induced a deep donor (\(+\)2/\(+1\)) level at \(E_{\mathrm {V}}+0.23\) eV and the \({\hbox {Al}}_{\rm Ge}\) induced a single acceptor level (0/?1) at \(E_{\mathrm {V}}+0.14\) eV in the band gap of Ge. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) induced double-donor levels are at \(E_{\rm V}+0.06\) and \(E_{\rm V}+0.12\) eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) exhibit properties of charge state-controlled metastability.  相似文献   

6.
A low-power, high-speed \(4\times 4\) multiplier using Dadda algorithm is proposed. The full adder blocks used in this multiplier have been designed using reduced-split precharge-data driven dynamic sum logic. Flip flops used in the pipeline registers have been designed to increase input signal noise margin, resulting in the minimization of output signal glitches. The multiplier circuit is implemented in 1P-9M Low-K UMC 90nm CMOS process technology. Post-layout simulations are carried out using Cadence Virtuoso. The proposed multiplier operates at a clock frequency of 3.5 GHz, with an average dynamic power consumption of 1.096 mW at a temperature of \(27\,^{\circ }\hbox {C}\) and 1 V supply voltage and occupies a chip area of \(76\,\upmu \hbox {m}\times 102\,\upmu \hbox {m}\).  相似文献   

7.
In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.  相似文献   

8.
This paper presents a capacitor-free low dropout (LDO) linear regulator based on a dual loop topology. The regulator utilizes two feedback loops to satisfy the challenges of hearing aid devices, which include fast transient performance and small voltage spikes under rapid load-current changes. The proposed design works without the need of a decoupling capacitor connected at the output and operates with a 0–100 pF capacitive load. The design has been taped out in a \(0.18\,\upmu \hbox {m}\) CMOS process. The proposed regulator has a low component count, area of \(0.012\, \hbox {mm}^2\) and is suitable for system-on-chip integration. It regulates the output voltage at 0.9 V from a 1.0–1.4 V supply. The measured results for a current step load from 250 to 500 \(\upmu \hbox {A}\) with a rise and fall time of \(1.5\,\upmu \hbox {s}\) are an overshoot of 26 mV and undershoot of 26 mV with a settling time of \(3.5\,\upmu \hbox {s}\) when \({C_L}\) between 0 and 100 pF. The proposed LDO regulator consumes a quiescent current of only \(10.5\,\upmu \hbox {A}\). The design is suitable for application with a current step edge time of 1 ns while maintaining \(\Delta V_{out}\) of 64 mV.  相似文献   

9.
A fully differential fourth-order 1-bit continuous-time delta-sigma ADC designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The circuit design, implementation and measurements on the fabricated die are shown. The loop filter consists of RC-integrators, programmable capacitor arrays, resistors and voltage feedback DACs. The quantizer contains a pulse generator, a high-speed clocked comparator and a pull-down clocked latch to ensure constant delay in the feedback loop. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The converter has a supply voltage of 1.2 V, a bandwidth of 10 MHz and an oversampling ratio of 16 leading to an operating frequency of 320 MHz. The design occupies a die area of \(0.0175\hbox { mm}^2\). Simulations with extracted parasitics show a SNR of 45.2 dB and a current consumption of \(489 \,\upmu \hbox {A}\). However, by adding a model of the measurement setup used, the performance degrades to 42.1 dB. The measured SNR and current consumption are 41.6 dB and \(495\,\upmu \hbox {A}\), which closely fit with the expected simulations. Several dies have been measured, and an estimation of the die spread distribution is given.  相似文献   

10.
A gain enhancement technique for a pseudo differential OTA based on voltage combiner, suitable for sub-1 V supply is presented in this letter. The proposed technique uses a G m boosted voltage combiner. Unlike the typical voltage combiner which has an approximated gain of \(2\,\frac{{\text{V}}}{{\text{V}}}\), this voltage combiner can produce gain more than \(5\,\frac{{\text{V}}}{{\text{V}}}\). So it help us achieve nearly 60 dB DC gain with 250 kHz UGB for the pseudo differential OTA at a capacitive load of 10 pF. Power dissipation is very low i.e. 716 nW at supply of 0.5 V. So as to facilitate maximum swing at 0.5 V supply and lower the power consumption, MOS transistors are biased in weak/moderate inversion. The OTA is designed in standard 45 nm CMOS process. Phase margin of is more than \(55^{\circ }\) for a typical load of 10 pF. The input referred noise is \(150\,\upmu {\text{V}}{/}\sqrt{{\text{Hz}}}\) at 10 Hz and slew rate \(0.02\,{\text{V}}{/}\upmu{\text{s}}\) for 10 pF load.  相似文献   

11.
In this paper, we present a novel phase-based structure for implementing the all-optical multi-function logic gates. The proposed structure which is composed of three coupled waveguides allows us to simultaneously access OR/NOR and AND/NAND logic functions from different output ports. The phase of middle waveguide plays the role of control tool which defines the logical values of outputs. The output ports can be switched from OR/NOR to AND/NAND logic functions by changing the control phase from 24\(^{\circ }\) to 237\(^{\circ }\), respectively. Beam propagation method has been employed in order to accomplish the simulations of light propagation.  相似文献   

12.
In this paper, we propose an LC-VCO using automatic amplitude control and filtering technique to eliminate frequency noise around 2\(\omega _0\). The LC-VCO is designed with TSMC 130 nm CMOS RF technology, and biased in subthreshold regime in order to get more negative transconductance to overcome the losses in the LC-Tank and achieve less power consumption. The designed VCO operates at 5.17 GHz and can be tuned from 5.17 to 7.398 GHz, which is corresponding to 35.5% tuning range. The VCO consumes through it 495–440.5 \(\upmu\)W from 400 mV dc supply. This VCO achieves a phase noise of \(-\,122.3\) and \(-\,111.7\) dBc/Hz at 1 MHz offset from 5.17 and 7.39 GHz carrier, respectively. The calculated Figure-of-merits (FoM) at 1 MHz offset from 5.17 and 7.39 GHz is \(-\,199.7\) and \(-\,192.4\) dBc/Hz, respectively. And it is under \(-\,190.5\) dBc/Hz through all the tuning range. The FoM\(_T\) at 1 MHz offset from 5.17 GHz carrier is \(-\,210.6\) dBc/Hz. The proposed design was simulated for three different temperatures (\(-\,55\), 27, \(125\,^{\circ }\hbox {C}\)), and three supply voltages (0.45, 0.4, 0.35 V), it was concluded that the designed LC-VCO presents high immunity to PVT variations, and can be used for multi-standard wireless LAN communication protocols 802.11a/b/g.  相似文献   

13.
14.
In recent years, radio frequency (RF) energy harvesting systems have gained significant interest as inexhaustible replacements for traditional batteries in RF identification and wireless sensor network nodes. This paper presents an ultra-low-power integrated RF energy harvesting circuit in a SMIC 65-nm standard CMOS process. The presented circuit mainly consists of an impedance-matching network, a 10-stage rectifier with order-2 threshold compensation and an ultra-low-power power manager unit (PMU). The PMU consists of a voltage sensor, a voltage limiter and a capacitor-less low-dropout regulator. In the charge mode, the power consumption of the proposed energy harvesting circuit is only 97 nA, and the RF input power can be as low as \(-\)21.4 dBm \((7.24\,\upmu \hbox {W})\). In the burst mode, the device can supply a 1.0-V DC output voltage with a maximum 10-mA load current. The simulated results demonstrate that the modified RF rectifier can obtain a maximum efficiency of 12 % with a 915-MHz RF input. The circuit can operate over a temperature range from \(-40\hbox { to }125\,^{\circ }\hbox {C}\) which exceeds the achievable temperature performance of previous RF energy harvesters in standard CMOS process.  相似文献   

15.
In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.  相似文献   

16.
In this paper, a novel, high-performance and robust sense amplifier (SA) design is presented for small \(I_\mathrm{CELLl}\) SRAM, using fin-shaped field effect transistors (FinFET) in 22-nm technology. The technique offers data-line-isolated current sensing approach. Compared with the conventional CSA (CCSA) and hybrid SA (HSA), the proposed current feed-SA (CF-SA) demonstrates 2.15\(\times \) and 3.02\(\times \) higher differential current, respectively, for \({V}_{\mathrm{DD}}\) of 0.6 V. Our results indicate that even at the worst corner, CF-SA can provide 2.23\(\times \) and 1.7\(\times \) higher data-line differential voltage compared with CCSA and HSA, respectively. Further, 66.89 and 31.47 % reductions in the cell access time are achieved compared to the CCSA and HSA, respectively, under similar \(I_\mathrm{CELLl}\) and bit-line and data-line capacitance. Statistical simulations have proved that the CF-SA provides high read yield with 32.39 and 22.24 % less \(\upsigma _{\mathrm{Delay}}\). It also offers a much better read effectiveness and robustness against the data-line capacitance as well as \({V}_{\mathrm{DD}}\) variation. Furthermore, the CF-SA is able to tolerate a large offset of the input devices, up to 80 mV at \({V}_{\mathrm{DD}}=0.6\hbox {V}\).  相似文献   

17.
The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures \( T_{\rm{s}} = 150 \)°C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal–semiconductor–metal (MSM-) structures. The as-measured constant-temperature direct-current (dc)-voltage (\( I\left( {V;T} \right) - V \)) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures (\( T = 18 - 90\,^\circ {\hbox{C}} \)). Their dc electrical resistance \( R_{\rm{dc}} (T \)) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy \( E_{\rm{act}} \approx 0.90 - 0.98 \,{\hbox{eV}} \), slightly less than half of room-temperature bandgap energy \( E_{\rm{g}} \) (\( \approx \,2.3\, {\hbox{eV}} \)) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated \( {\hbox{PbI}}_{\rm{x}} \) thin films were homogeneous and almost stoichiometric (\( x \approx 1.87 \)), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at \( T_{\rm{s}} { \gtrsim }150^\circ {\hbox{C}} \). Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on–off visible-light illumination reveal a feeble photoresponse for long wavelengths (\( \lambda > 570\,{\hbox{nm}} \)), but a strong response to blue light of photon energy \( E_{\rm{ph}} \) \( \approx \,2.73 \, {\hbox{eV}} \) (\( > E_{\rm{g}} \)), due to photogenerated electron–hole (e–h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current–time \( I\left( {T,V} \right) - t \) curves of the studied lateral PbI2 MSM-structures at low ambient temperatures (\( T < 50^\circ {\hbox{C}} \)), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on \( V \) and \( T \), with thermally generated charge carriers in the PbI2 mask photogenerated (e–h) pairs at higher temperatures.  相似文献   

18.
There is an increasing demand for long-term ECG monitoring applications which are very low power, small size and capable of wireless data transmission. This paper presents an analog front-end and also modulator for long-term ECG recording purpose. The fully integrated system features three independent channels and a modulator. The analog front-end includes a voltage-to-time conversion and a tunable modulator to achieve a very low power consumption for wireless transmission of the data without analog to digital converter. The proposed system is designed and simulated in a \(0.18\,\upmu \hbox {m}\) CMOS technology and occupies only \(0.245\,\mathrm{mm}^{2}\). It can record ECG signal with 9.2-bit resolution while consuming only \(0.36\,\upmu {\mathrm{W}}\) per channel from a 0.9 V supply. Also, it can transmit data consuming just \(0.72\,{\upmu }\mathrm{W}\) per channel from a 0.9 V supply. The input referred noise of the readout channel is \(2.01\,\upmu {\mathrm{V}}_{{{\rm rms}}}\).  相似文献   

19.
In this paper, we demonstrate new dissimilar refractive index profiles for highly nonlinear ultra-flattened dispersion fibers with noteworthy effective area \((A_\mathrm{eff})\) for future optical signal processing. The newly proposed fibers named from Type 1 to Type 5 have a flattened dispersion over S, C, L and U bands. Predominantly, few-mode HNL-UFF fiber of Type 3 yields dispersion-flattened characteristics over a range of 250 nm of optical communication spectrum with a mere 0.2 ps/nm km variation in dispersion and a dispersion slope of \(0.0057\hbox { ps}/\hbox {nm}^{2}\) km due to the contribution of higher-order modes to the dispersion characteristics of the fiber. Moreover, it has a moderate nonlinear coefficient of \(8.03\hbox { W}^{-1}\,\hbox {km}^{-1}\). By modifying the refractive index profile of Type 3 fiber, Type 4 and Type 5 fibers are obtained in order to ensure single-mode operation, while the zero flattened dispersion characteristics of the fiber are compromised. Among the newly proposed fibers, Type 4 fiber offers a very low ITU-T cutoff wavelength of \(1.33~\upmu \hbox {m}\), whereas in the case of Type 5 fiber it is \(1.38~\upmu \hbox {m}\). Moreover, Type 4 and Type 5 fibers have good nonlinear coefficients of \(12.26\hbox { W}^{-1}\,\hbox {km}^{-1}\) and \(11.45\hbox { W}^{-1}\,\hbox {km}^{-1}\), respectively. By virtue of the proposed optimized index profile, an insensitive behavior toward bending is displayed by Type 3, Type 4 and Type 5 fibers. In addition, Type 4 fiber provides a better splice loss of 0.25 dB.  相似文献   

20.
In this paper, we study the security of a general two-level E0-like encryption model and its instance, the real-world Bluetooth encryption scheme. Both unconditional and conditional correlation properties of the two-level model are investigated in theory and a key-recovery framework based on condition masking, that studies how to choose the condition to get better tradeoffs on the time/memory/data complexity curve, is refined. A novel design criterion to resist the attack is proposed and analyzed. Inspired by these cryptanalytic principles, we describe more threatening and real time attacks on two-level E0. It is shown that only the latest four inputs going into the FSM play the most important role in determining the magnitude of the conditional correlation and the data complexity analysis of the previous practical attacks on two-level E0 are inaccuracy. A new decoding method to improve the data complexity is provided. In the known-IV scenario, if the first 24 bits of \(2^{24}\) frames are available, the secret key can be reliably found with \(2^{25}\) on-line computations, \(2^{21.1}\) off-line computations and 4 MB memory. Then, we convert the attack into a ciphertext-only attack, which needs the first 24 bits of \(2^{26}\) frames and all the complexities are under \(2^{26}\). This is the first practical ciphertext-only attack on the real Bluetooth encryption scheme so far. A countermeasure is suggested to strengthen the security of Bluetooth encryption in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号