首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel porous ZnO nanoflakes were fabricated by a facile two-step method containing preparation of precursor ZnCO3 and subsequently calcination of ZnCO3. The as-prepared products were analyzed by X-ray diffraction, scanning electron microscopy, and thermalgravimetric analysis. The results reveal that the porous ZnO nanoflakes were in the diameter and thickness of several to tens micrometers and 100–500 nm, respectively. The microwave absorption properties of porous ZnO nanoflakes were investigated by the network analyzer, which exhibit the minimal reflection loss of ?34.5 dB at 10.7 GHz with only thickness of 1.5 mm. The effective absorption (below ?10 dB) bandwidth can be tuned between 7.0 GHz and 17.1 GHz by tuning absorber thickness of 1.0–2.2 mm. Thus, the porous lamellar ZnO could be used as a promising absorbing material with the features of high efficiency absorption, wide-band and light weight.  相似文献   

2.
In this work atomic layer deposition (ALD) was employed to fabricate coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires.The morphology,microstructure,and ZnO shell thickness dependent electromagnetic and microwave absorbing properties of these Ni-A12O3-ZnO nanowires were characterized.Excellent microwave absorbing properties with a minimum reflection loss (RL) of approximately-50 dB at 9.44 GHz were found for the Ni-Al2O3-100ZnO nanowires,which was 10 times of Ni-A12O3 nanowires.The microwave absorption frequency could be effectively varied by simply adjusting the number of ZnO deposition cycles.The absorption peaks of Ni-Al2O3-100ZnO and Ni-A12O3-150ZnO nanowires shifted of 5.5 and 6.8 GHz towards lower frequencies,respectively,occupying one third of the investigated frequency band.The enhanced microwave absorption arose from multiple loss mechanisms caused by the unique coaxial multi-interface structure,such as multi-interfacial polarization relaxation,natural and exchange resonances,as well as multiple internal reflections and scattering.These results demonstrate that the ALD method can be used to realize tailored nanoscale structures,making it a highly promising method for obtaining high-efficiency microwave absorbers,and opening a potentially novel route for frequency adjustment and microwave imaging fields.  相似文献   

3.
The work attempted to develop a kind of high temperature microwave absorption coating. The Ti3SiC2/NASICON composite coatings with different Ti3SiC2 concentrations were fabricated by atmospheric plasma spraying. The effect of Ti3SiC2 addition on phase, density, microstructure, dielectric property and microwave absorption property of as-sprayed coatings was investigated. Results show that the complex permittivity increases with increasing the content of Ti3SiC2 due to the enhanced space charge polarization, decreased porosity and increased conduction loss. When the content of Ti3SiC2 increases to 30 wt%, the coating exhibits the optimal microwave absorption property with a bandwidth (below ??5 dB) of 4.01 GHz and lowest reflection loss of ??12.4 dB at 9.63 GHz in 1.4 mm thickness. It indicates that the Ti3SiC2/NASICON composite coating can be a potential candidate for microwave absorption.  相似文献   

4.
Nanostructured ZnO materials have unique and highly attractive properties and have inspired interest in their research and development. This paper presents a facile method for the preparation of novel ZnO-based nanostructured architectures using a metal organic framework (MOF) as a precursor. In this approach, ZnO nanoparticles and ZnO@C hybrid composites were produced under several heating and atmospheric (air or nitrogen) conditions. The resultant ZnO nanoparticles formed hierarchical aggregates with a three-dimensional cubic morphology, whereas ZnO@C hybrid composites consisted of faceted ZnO crystals embedded within a highly porous carbonaceous species, as determined by several characterization methods. The newly synthesized nanomaterials showed relatively high photocatalytic decomposition activity and significantly enhanced adsorption capacities for organic pollutants.  相似文献   

5.
A nanoarchitecture of multiwalled carbon nanotubes (MWCNTs) anchored with CoS nanoplates (MWCNTs/CoS) has been achieved via a simple and effective solvothermal approach. And such heterostructures were initially investigated as microwave absorbers, on which the corresponding influence of layer thickness, filler loading concentration and different morphologies was systematically studied. In this work, with the introduction of CoS nanoplates into the carbon nanotubes, a substantially enhanced microwave absorption ability was observed for MWCNTs/CoS, endowed with an optimal reflection loss value of ?56.1 dB at 6.6 GHz. The excellent electromagnetic performance could be attributed to the good combination of the hybrid structure and enhanced interface polarization. It is envisioned that MWCNTs/CoS nanomaterials would be highly promising candidate as advanced microwave absorber.  相似文献   

6.
In this study, ordered mesoporous inter-filled silicon carbide/silica composites containing ethylenediamine (EDA-SiC/SiO2) were fabricated by nanocasting and cold-pressing. The as-prepared composites exhibited enhanced microwave absorption. By multi-technique approach utilization, it was demonstrated that EDA acted as a carbon source during pyrolysis progress. The EDA-SiC/SiO2 fabricated at 1300 °C exhibited a minimum reflection loss (RL) of ?53.0 dB at 10.1 GHz, and effective absorption bandwidth (RL < ?10 dB) covered the entire X-band. It was also illustrated that the enhanced dielectric loss originated from the high electrical conductivity induced by the ordered inter-filled network and crystalline carbon. Furthermore, the optimal absorbing thickness was also determined by the impedance match and quarter-wavelength law.  相似文献   

7.
M-type barium ferrite with Mg–Ti substitution and MWCNT addition was synthesized using high-energy ball milling. The prepared sample was further analyzed using X-ray diffraction, field emission scanning electron microscope (FESEM), vibrating sample magnetometer and vector network analyzer. The results showed that the particle size had a wide range of distribution, and a hexagonal structure was formed in the sample. The sample was observed to have lower saturation magnetization and coercivity after Mg–Ti was substituted with MWCNT and added into the barium hexaferrite. Reflection loss was studied as a function of frequency and thickness of the sample. For Mg–Ti substituted barium hexaferrite composite with a thickness of 2.0 mm, the reflection loss peaked at ?28.83 dB at a frequency of 15.57 GHz with a bandwidth of 6.43 GHz at a loss of less than ?10 dB. The microwave absorption primarily resulted from magnetic losses caused by magnetization relaxation, domain wall resonance, and natural resonance. FESEM micrograph demonstrated that carbon nanotubes were attached to the external surface of the ferrite nanoparticles. The investigation of the microwave absorption indicated that with an addition of carbon nanotubes, the real and imaginary parts of permittivity and reflection loss had enhanced to ?34.16 dB at a frequency of 14.19 GHz with a bandwidth of 5.72 GHz.  相似文献   

8.
Tetra-needle-like ZnO whisker was magnetic modified through in situ synthesis of nanosized Fe3O4 particles on the surface of the whisker, and the microwave absorption behavior of the as-prepared product was investigated in detail. The result of the comparative microwave absorbing experiment showed that the magnetic modified ZnO whisker appeared more superior property of microwave absorption than that of the original ZnO whisker in 2-18 GHz. Further investigation indicated that the microwave absorption behavior of the product was influenced by ferrite content and Fe3O4 particles' distribution in the product. When the ferrite content of the product changed from 2 wt% to 9 wt%, the microwave absorbing ability of the product was increased; then, the microwave absorbing ability of the product decreased with the further increasing of ferrite content from 9 wt% to 16 wt%. The product with uniform distribution of Fe3O4 particles showed better microwave absorption property than that with irregular distribution of Fe3O4 particles, and this result inferred that the biphase interface between ZnO and Fe3O4 contributed to microwave absorption through interface polarization.  相似文献   

9.
Here we report, copper (Cu) and Aluminum (Al) doped zinc oxide (ZnO) nanoparticles by a novel one step microwave irradiation method for the first time. Powder X-ray diffraction (XRD) reveals that both pure and doped samples assigned to hexagonal wurtzite type structure. The calculated average crystalline size decreases from 24 to 11 nm for pure and doped (Al and Cu) ZnO respectively, which is in good agreement with the particles size observed from Transmission Electron Microscope (TEM) analyses. A considerable red shift in the absorption edge and the reduction in the energy gap from 3.35 to 2.95 eV reveal the substitution of Al3+ and Cu2+ ions into the ZnO lattice analyzed by UV–Vis transmission spectra. The photocatalytic degradation of Methyl Violet (MV), Phenol and Rhodamine B (RHB) was investigated by using pure, Al and Cu doped ZnO catalyst under UV light irradiation. The results showed that the photocatalytic property is significantly improved by Cu doping concentration. This could be attributed to extended visible light absorption, inhibition of the electronehole pair’s recombination and enhanced adsorptivity of dye molecule on the surface of Cu–ZnO nanopowders. The samples were further characterized by photoluminescence spectra and Fourier Infrared Spectra (FTIR) analysis.  相似文献   

10.
In the present study photoluminescence behavior of ZnO and ZnO@CdS core–shell nanorods film has been reported. ZnO nanorods were grown on the glass coated indium tin oxide (ITO) surface by seeding ZnO particle followed with nanorods growth. These nanorods were coated with CdS by chemical bath deposition techniques to have ZnO@CdS thin film and further annealed at 200 °C for their adherence to the ITO surface. The coating was characterized for surface morphology using SEM and optical behavior using UV–visible spectrophotometer. Energy dispersive X-ray (EDX) was used for compositional analysis and time resolve photoluminescence decay for excitons life time measurement. The absorption spectrum reveals that the absorption edge of ZnO@CdS core–shell heterostructure shifted to 480 nm in the visible region whereas ZnO nanorods have absorption maxima at 360 nm. The excitons lifetime of ZnO@CdS was found to be increased with the thickness of the CdS layer on ZnO nanorod. These ZnO@CdS core–shell nanostructures will be of great use in the field of photovoltaic cell and photocatalysis in a UV–visible region.  相似文献   

11.
Fe3O4-reduced graphene oxide-polyaniline (Fe3O4–RGO–PANI) ternary electromagnetic wave absorbing materials were prepared by in situ polymerization of aniline monomer on the surface of Fe3O4–RGO nanocomposites. The morphology, structure and other physical properties of the nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, vibration sample magnetism, etc. The electromagnetic wave absorbing properties of composite materials were measured by using a vector network analyzer. The PANI–Fe3O4–RGO nanocomposites demonstrated that the maximum reflection loss was ?36.5 dB at 7.4 GHz with a thickness of 4.5 mm and the absorption bandwidth with the reflection loss below ?10 dB was up to 12.0 GHz with a thickness in the range of 2.5–5.0 mm, suggesting that the microwave absorption properties and the absorption bandwidth were greatly enhanced by coating with polyaniline (PANI). The strong absorption characteristics of PANI–Fe3O4–RGO ternary composites indicated their potential application as the electromagnetic wave absorbing material.  相似文献   

12.
Silver (Ag) nanoparticles fabricated by chemical reduction process were grafted onto the surface of carbon nanotubes (CNTs) to prepare hybrid nanocomposites. The Ag/CNT hybrid nanomaterials were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The Ag/CNT hybrid nanomaterials were then loaded in paraffin wax, and pressed into toroidal shape with thickness of 1 mm to evaluate their complex permittivity and complex permeability by scattering parameters measurement method in reflection mode using vector network analyzer. The reflection loss of the samples was calculated according to the transmission line theory using their measured complex permittivity and permeability. The minimum reflection loss of the Ag/CNT hybrid nanocomposite sample with a thickness of 1 mm reached 21.9 dB (over 99 % absorption) at 12.9 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than ?10 dB (over 90 % absorption) was from 11.7 to 14.0 GHz. The Ag/CNT hybrid nanocomposite with thickness of 6 mm showed a minimum reflection loss of ~?32.1 dB (over 99.9 % absorption) at 3.0 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss shifted to lower frequency as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their thickness indicates that these hybrid nanocomposites could be a promising microwave absorber.  相似文献   

13.
The development of a cost-effective microwave absorber with wide bandwidth corresponding to reflection loss (RL)?≤??10 dB is still a very challenging task. A sugarcane bagasse-based agricultural waste composite has been analyzed for its elemental contents. The combination of elements is suitable for its possible usage as a cost-effective microwave absorbing material. Therefore, this composite has been subjected to morphological and electromagnetic studies to analyze its microwave absorbing behavior. The frequency dependent complex dielectric permittivity and complex magnetic permeability values were obtained using a transmission/reflection waveguide approach in the X-band. Furthermore, the effect of the Minkowski loop frequency selective surface (FSS) was studied over the absorption capability of the composite. It was found that the application of FSS leads to a reduction in thickness up to 2.9 mm and an enhancement in absorption bandwidth up to 3.6 GHz. The FSS patterned composite shows a remarkable performance with peak RL of ?28.4 dB at 10.7 GHz and absorption bandwidth of 3.6 GHz.  相似文献   

14.
Flower-like Ni structures composed of leaf-like flakes were synthesized through a facile solvothermal approach independent of surfactants or magnetic force. The evolution of the morphology was closely related to the variation of NaOH and volume ratios of ethylene glycol to water. The microwave absorbing properties of the flower-like Ni wax-composite were evaluated based on the complex permittivity (εr = ε′ ? jε″) and permeability (µr = µ′ ? jµ″). The Ni wax-composite exhibited excellent microwave absorption performances with a minimum reflection loss of ?46.1 dB at 13.3 GHz, corresponding to a matching thickness of 2.0 mm. In particular, the absorption bandwidth of RL below ?10 dB was 3.6 GHz (11.7–15.3 GHz). The attenuation of microwave could be attributed to the dielectric loss and unique flower-like structure.  相似文献   

15.
The pre-oxidized fibers were carbonized at the temperature ranging from 400 to 1300 °C for 1 h. The microwave absorption properties of carbon fibers (CFs) were examined in the frequency range of 2–18 GHz. It is found that the reflection loss characteristics are highly sensitive to the carbonization temperature. At a thickness of 2 mm, the CFs obtained at 710 °C exhibit the best microwave absorbing ability with a maximum reflection loss of ?22.9 dB at 15 GHz, and a bandwidth exceeding ?10 dB in the range 12.4–18 GHz. Results indicate that dielectric loss in cooperation with better matched characteristic impedance results in the excellent microwave absorption of CFs. Low temperature makes ?′ and ?″ too small to consume the energy of microwave, while over high temperature makes ?′ and ?″ too large to transmit the microwave into the CFs.  相似文献   

16.
For the first time, the hierarchical structures of Li0.35Zn0.3Fe2.35O4(LZFO)/polyaniline nanocomposites were successfully synthesized by interfacial polymerization. Firstly, the LZFO particles were prepared by the sol–gel method, and subsequently the PANI nanorods, composed of nanoneedle-like PANI, were grafted on the surface of the LZFO. A novel microtopography, urchin-like, of LZFO/PANI was prepared by a simple, efficient and controllable two-step method. The crystal structure, chemical bonding states and morphology of samples were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Scanning and Transmission electron microscopy (SEM/TEM). The bandwidth of reflection loss exceeds 10 dB in the frequency was 5.56 GHz (3.36–8.48, 10.32–10.76 GHz), and the maximum reflection loss can reach ??49.4 dB at 4.96 GHz with the thickness of 5.1 mm. The enhanced microwave absorption properties of LZFO/PANI nanocomposites are mainly ascribed to the multi-level structure and the improved impedance matching, and make it a potential candidate for microwave absorption materials.  相似文献   

17.
Effect of dimethyl borate (C3H9BO3) composition on the structure, morphology, thickness, elemental composition, optical absorption, photoluminescence of ZnO nanotubes and the performance of the DSSC has been studied. It was found that the structure, diameter, thickness, elemental composition, optical absorption and morphology of ZnO nanostructure are significantly influenced by the composition of dimethyl borate. The diameter and thickness of ZnO nanotubes decrease with the increase in the composition of C3H9BO3. The photoluminescence increases with the composition of C3H9BO3. The DSSC utilizing ZnO nanotubes synthesized at 1 wt% C3H9BO3 yields the J SC and η of 1.9 mA cm?2 and 0.222 %, respectively.  相似文献   

18.
An aromatic, diether-linked phthalocyanine resin (Pc) was prepared from 4,4′-bis (3,4-dicyanophenoxy) biphenyl (BPh) and investigated for morphology, microstructure, dielectric, conductivity and microwave absorption properties at different annealing temperatures from 300 to 800 °C. The results showed that the annealing temperature could significantly change the morphology and microstructure of the Pc polymer, leading to the generation of carbon-Pc polymer composites, and enhance the microwave absorbing and electrical properties of the Pc polymer. The dramatic electrical and dielectric transition happened when the annealing condition was 550 °C 24 h. The conductivity of the samples exhibited a transition of electrical behavior from an insulator to semiconductor of approximately 10+2 S/cm. Pc polymer exhibited excellent microwave absorption properties in the frequency range of 0.5–18.0 GHz after sintering process. The microwave absorption of the annealing Pc polymer can be mainly attributed to the dielectric loss rather than magnetic loss. The sample annealed at 500 °C 24 h had two strong microwave absorbing peaks and achieved a maximum absorbing value of ?44 dB around 10.7 and 17.5 GHz when the thickness was 3.0 mm. The novel carbon-Pc polymer composites were believed to have potential applications in the microwave absorbing area.  相似文献   

19.
Stealth applications now emphasise on development of efficient Radar Absorbing Materials of light weight, less coating thickness, broad bandwidth of absorption along with cost effective raw materials and manufacturing techniques. Therefore, in this paper an attempt has been made to develop such an efficient cost effective radar absorbing material which possesses broad band absorption with less coating thickness. Unconventionality of acquiring impedance match for a double layer absorber of nanostructured nickel ferrite (NF) with reasonably good dielectric properties and its cation substituted counterpart, nickel zinc ferrite (NZF) with enhanced magnetic properties has been thoroughly investigated for radar wave absorption for very low coating thickness. Complex permittivity and permeability of NF and NZF with crystallite sizes of 10.0 and 16.0 nm, respectively, are measured and used as the data bases. The microwave absorption properties of the ferrites are correlated with their size, morphology, permittivity, permeability, thickness and bandwidth of absorption. Multilayering has been performed using the optimization through Genetic Algorithm in order to attain suitable impedance matching layer for minimum reflection loss (RL) at lower thickness. The results indicate an enhancement in the absorption with RL value of ?45.0 dB for a moderately low coating thickness of 1.72 mm. Single layers NF, NZF and multilayer NF–NZF are fabricated over the aluminium sheets and the results are experimentally verified.  相似文献   

20.
N-doped and Al–N codoped ZnO thin films with different volume ratios of N2 reactive gas were deposited on plane glass substrates using the radio frequency magnetron sputtering method. The phase transition temperature and absorption edge of the ZnO powder were studied by differential scanning calorimetry at different heating rates and with Fourier transform infrared spectroscopy, respectively. The target used for the sputtering was synthesized using a palletize machine. It was sintered at 450 °C for 5 h. The X-ray diffraction results confirm that the thin films have wurtzite hexagonal structures with a very small distortion. The results indicate that the ZnO thin films have obviously enhanced transmittance of up to 80% on an average in the visible region. The Al–N codoped ZnO thin films exhibited the best p-type conductivity with a resistivity of 0.825 Ω-cm, a hole concentration of 6.55 × 1019 cm?3, and a Hall mobility of 1.25 cm2/Vs. The p-type conductivity was observed after doping and codoping of the ZnO thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号