首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Science and Technology》2004,64(10-11):1419-1435
This paper deals with hygrothermal effects on the nonlinear vibration and dynamic response of shear deformable laminated plates. The temperature field considered is assumed to be a uniform distribution over the plate surface and through the plate thickness. The material properties of the composite are affected by the variation of temperature and moisture, and based on a micro-mechanical model. The formulations are based on higher-order shear deformation plate theory and general von Kármán-type equation of motion, which includes hygrothermal effects. The equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic responses of shear deformable antisymmetric angle-ply and unsymmetric cross-ply laminated plates. The numerical illustrations concern the nonlinear vibration and dynamic response of the shear deformable laminated plates under different sets of hygrothermal environmental conditions. Effects of temperature rise, the degree of moisture concentration, and fiber volume fraction on natural frequencies, nonlinear to linear frequency ratios and dynamic responses are studied.  相似文献   

2.
This paper deals with the large amplitude vibration of nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation in thermal environments. The SWCNTs are assumed aligned, straight and a uniform layout. Two kinds of carbon nanotube-reinforced composite (CNTRC) plates, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation plate theory that includes plate-foundation interaction. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies of CNTRC plates. Numerical results reveal that the natural frequencies as well as the nonlinear to linear frequency ratios are increased by increasing the CNT volume fraction. The results also show that the natural frequencies are reduced but the nonlinear to linear frequency ratios are increased by increasing the temperature rise or by decreasing the foundation stiffness. The results confirm that a functionally graded reinforcement has a significant effect on the nonlinear vibration characteristics of CNTRC plates.  相似文献   

3.
The impact of a solid projectile via an elastic buffer on an orthotropic elastic plate possessing a cylindrical anisotropy has been numerically simulated. The dynamical behavior of the plate is described in terms of the Uflyand-Mindlin wave equations taking into account the rotary inertia and the transverse shear deformations. The wave equations are solved using the ray method and the matching of asymptotic expansions obtained for short times inside and outside the contact zone. The influence of the anisotropy of the plate material on the dynamic contact force and the plate inflection at the impact site has been studied.  相似文献   

4.
 A new numerical method, which is based on the dual reciprocity boundary element method, is developed for the large deflection of thin elastic plates whose behaviour is governed by von Kármán equations. In the proposed method, the nonlinear and coupled parts of von Kármán equations are transformed to a set of boundary integrals, and only are the boundary discretized into elements. Therefore, a `pure' boundary element approach for the problems of large deflection of thin elastic plates can be achieved. On the other hand, benefiting from the present method, the plate stresses can be calculated directly without integral and singularity. Several examples are given to demonstrate the efficiency and accuracy of the present method. Received 11 October 1999  相似文献   

5.
Abstract

In this paper, the effects of hygrothermal conditions on various behaviors, such as bending, free vibration, mechanical and thermal buckling, of exponentially graded microplates lying on two-parameter elastic foundations are investigated. The trigonometric four-variable plate theory incorporated to the modified couple stress theory (MCST) is employed to derive the equations of motion. The present MCST contains an internal material length scale parameter, thus it can capture the size effect. The microplate is assumed to be subjected to a temperature rise and moisture concentration which are varied linearly through the thickness of the plate. Based on an exponential law, the material properties of the microplate are graded only in z direction. The equations of motion are solved analytically to obtain the displacements, stresses, eigenfrequencies and critical buckling load and temperature of the microplates. The present results are validated by comparing them with those previously published. The numerical examples reveal that considering the size effect and/or the elastic foundations leads to an increment in plate stiffness and thereby leads to a decrement in the deflection and an increment in eigenfrequency and buckling loads. It is also shown that the size effect is negligible for the thicker plate.  相似文献   

6.
《Composites Part B》2002,33(4):325-332
The purpose of this paper is to determine the indentation produced by a rigid indentor falling on a sandwich plate with a height–density closed cellular foam core. Two different indentor shapes are considered: a rigid sphere and a cylindrical rigid punch. By assuming that the time of complete indentation of the indentors is much larger than the time required by the elastic waves to propagate from the point of first contact to the boundary of the plate, a static analysis is performed. A distribution of surface pressures reproducing the contact law of the rigid indentor on an elastic half-space is introduced and the sandwich plate theory proposed by Dundrová, Kovarı́k and Slapák (1970) is adopted; the explicit solutions with pre-assigned surface pressures are obtained and the contact force–indentation relations, before the sandwich plate is damaged, are found. The contact laws are obtained for both a simply supported and a clamped circular sandwich plate and the relevant influence of boundary conditions on the elastic response of the sandwich plate is shown.  相似文献   

7.
In this paper, nonlinear dynamic response of rectangular laminated composite plate resting on nonlinear Pasternak type elastic foundations is investigated. First-order shear deformation theory (FSDT) is used for modeling of moderately thick plates. The plate formulation is based on the von Karman nonlinear equation. The resulting nonlinear governing equations for transient analysis of laminated plates on elastic foundation are integrated using the discrete singular convolution-differential quadrature coupled approaches. The nonlinear governing equations of motion of plate are discretized in space and time domains using the discrete singular convolution and the differential quadrature methods, respectively. The validity of the present method is demonstrated by comparing the present results with those available in the open literature. The effects of the foundation parameters, boundary conditions and geometric parameters of plates on nonlinear dynamic response of laminated thick plates are investigated.  相似文献   

8.
本文研究了切向均布随从力作用下简支FGM矩形板的非线性振动问题。按照材料组份体积分数的简单幂率分布规律,FGM板的材料常数仅沿厚度连续变化。由大挠度的von Karman理论建立了以应力函数和挠度函数表示的运动偏微分方程组,再由Galerkin法转化成非线性常微分方程。对随从力作用下的四边简支陶瓷/金属矩形板,讨论了随从力、梯度指标和边长比对板的动力特性的影响,得到了各种条件下板中心振幅与非线性基频的关系。  相似文献   

9.
In this study, the nonlinear thermo-elastic bending analysis of a functionally graded carbon nanotube-reinforced composite plate resting on two parameter elastic foundations is investigated. The material properties of the carbon nanotube-reinforced composite plates are assumed to be temperature dependent and graded in the thickness direction. The nonlinear formulations are based on a first-order shear deformation plate theory and large deflection von Karman equations. A dynamic relaxation method is employed to solve the plate nonlinear partial differential equations. The effects of volume fraction of carbon nanotubes, thermal gradient, temperature dependency, elastic foundation, boundary conditions, plate width-to-thickness ratio, aspect ratio, and carbon nanotubes distribution are studied in detail.  相似文献   

10.
This paper is analytically concerned with nonlinear flexural oscillation of an unsymmetrically laminated angle-ply rectangular plate resting on a Pasternak-type elastic foundation. The plate edges are subjected to the varying rotational constraints. Based on dynamic von Kármán-type nonlinear plate theory a single-mode analysis is carried out. In the formulation of a solution the force function and bending moments along the four edges are expanded into generalized Fourier series. These moments are also replaced by an equivalent lateral pressure near these edges. Galerkin's procedure and the perturbation technique are applied to the equation of motion and the time equation respectively. Numerical results for the amplitude-frequency response of the plate are presented graphically for various high-modulus composite materials, geometries of lamination, aspect ratios, moduli of elastic foundation and boundary conditions. Present results are compared with the existing values.  相似文献   

11.
In this article, dynamic stability analysis of the viscoelastic piezoelectric polymeric nanocomposite plate reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) based on modified strain gradient theory (MSGT) is explored. The viscoelastic piezoelectric polymeric nanocomposite plate reinforced is subjected to hydrothermal and electro-magneto-mechanical loadings. The viscoelastic piezoelectric polymeric nanocomposite plate is rested on viscoelastic foundation. Uniform distribution (UD), various functionally graded (FG) distribution types such as FG-V, FG-X, and FG-O are considered for single-walled carbon nanotubes (SWCNTs). The extended mixture approach is applied to estimation of the elastic properties. The equations of motion are derived by Hamilton's principle. The resonance frequency or the parametric resonance is obtained then dynamic stability region is specified. There is a good agreement between the present work and the literature result. Various parametric investigations are performed for the influences of the small scale parameters, direct and alternating applied voltage, magnetic field, viscoelastic foundation coefficients, and aspect ratios on the dynamic stability region of the viscoelastic piezoelectric polymeric nanocomposite plate. The results indicated that SWCNT agglomeration and surface stress have significant effects on the dynamic stability region and the parametric resonance. Dynamic stability region increases with increasing of thickness to width ratio, magnetic field, applied voltage, static load factor, viscoelastic foundation parameters, and surface density constant, and decreasing of length to width ratio and residual surface stress constant. Also, the dynamic stability region shifts to lower parameter resonance with increasing of temperature and moisture changes. The results can be employed for design of micro-electro-mechanical systems and nano-electro-mechanical systems.  相似文献   

12.
In this paper, the effect of random system properties on the post buckling load of geometrically nonlinear laminated composite cylindrical shell panel subjected to hygrothermomechanical loading is investigated. System parameters are assumed as independent random variables. The higher order shear deformation theory and von-Karman nonlinear kinematics are used for basic formulation. The elastic and hygrothermal properties of the composite material are considered to be dependent on temperature and moisture concentration using micromechanical approach. A direct iterative based C0 nonlinear finite element method in conjunction with first-order perturbation technique proposed by present author for the plate is extended for shell panel subjected to hygrothermomechanical loading to compute the second-order statistics (mean and variances) of laminated composite cylindrical shell panel. The effect of random system properties, plate geometry, stacking sequences, support conditions, fiber volume fractions and temperature and moisture distributions on hygrothermomechanical post-buckling load of the laminated cylindrical shell panel are presented. The performance of outlined stochastic approach has been validated by comparing the present results with those available in the literature and independent Monte Carlo simulation.  相似文献   

13.
The impact of a rigid body upon an elastic isotropic plate is investigated for the case when the equations of motion take rotary inertia and shear deformation into account. The impactor is considered as a mass point, and the contact between it and the plate is established through a buffer involving a linear-spring–fractional-derivative dashpot combination, i.e., the viscoelastic features of the buffer are described by the fractional-derivative Maxwell model. It is assumed that a transient wave of transverse shear is generated in the plate, and that the reflected wave has insufficient time to return to the location of the spring’s contact with the plate before the impact process is completed. To determine the desired values behind the transverse-shear wave front, one-term ray expansions are used, as well as the equations of motion of the impactor and the contact region. As a result, we are led to a set of two linear differential equations for the displacements of the spring’s upper and lower points. The solution of these equations is found analytically by the Laplace-transform method, and the time-dependence of the contact force is obtained. Numerical analysis shows that the maximum of the contact force increases, tending to the maximal contact force when the fractional parameter is equal to unity.  相似文献   

14.
An analytical solution for a low velocity impact between a thin transversely isotropic plate made of a strain-hardening material supported by a rigid substrate and a rigid sphere is presented. One of the novelties of this work is employing a linear strain-hardening model for investigating the indentation phenomenon in the plastic zone, rather than the traditional perfectly plastic model. Another novelty of this work is employing the homotopy perturbation method to derive analytical solutions for the highly nonlinear governing equations of contact. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, i.e., (1) the elastic indentation, (2) the plastic indentation, and (3) the elastic unloading stages, are investigated in detail. Comparison of the present results with results obtained from the iterative numerical time integration method confirms the accuracy and efficiency of the present solution.  相似文献   

15.
The thermal postbuckling behavior of graphite/epoxy multi-layered rectangular plates of various boundary conditions is studied using the finite element method. Temperature dependent thermal and elastic properties of the material are used in the analysis. The nonlinear finite element equations are solved as a sequence of linear eigenvalue problems to trace the thermal postbuckling paths of 15-layered symmetric angle-ply plates. The presence of secondary instability with an unsymmetric deformation mode has been identified for symmetric laminates under uniform temperature rise. In the case of linearly varying temperature rise through the thickness of the plate, the nonlinear equilibrium equations are solved by the modified Newton–Raphson technique to get the temperature-displacement curves.  相似文献   

16.
This paper deals with the forced vibration behavior of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic (METE) nanobeams based on the nonlocal elasticity theory in conjunction with the von Kármán geometric nonlinearity. The METE nanobeam is assumed to be subjected to the external electric potential, magnetic potential and constant temperature rise. Based on the Hamilton principle, the nonlinear governing equations and corresponding boundary conditions are established and discretized using the generalized differential quadrature (GDQ) method. Thereafter, using a Galerkin-based numerical technique, the set of nonlinear governing equations is reduced into a time-varying set of ordinary differential equations of Duffing type. The pseudo-arc length continuum scheme is then adopted to solve the vectorized form of nonlinear parameterized equations. Finally, a comprehensive study is conducted to get an insight into the effects of different parameters such as nonlocal parameter, slenderness ratio, initial electric potential, initial external magnetic potential, temperature rise and type of boundary conditions on the natural frequency and forced vibration characteristics of METE nanobeams.  相似文献   

17.
This article studies nonlinear dynamic stability of carbon nanotube-reinforced composite (CNTRC) plates resting on an elastic foundation. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in the form of uniformly distributed (UD) and functionally graded (FG) reinforcements. The governing equations are established based on classic plate theory, which is converted to a Mathieu-type equation by using a two-step perturbation technique, and then solved by adopting an incremental harmonic balanced (IHB) method. In numerical results, the effects of nonlinear geometric factor, distribution and fraction volume of CNTs, and foundation stiffness on principle dynamic unstable regions are discussed.  相似文献   

18.
杨志安  贾尚帅 《功能材料》2007,38(A09):3638-3640
研究机械力作用下金属,陶瓷功能梯度薄板的建模问题。应用弹性理论和Galerkin方法建立小挠度金属,陶瓷功能梯度薄板受横向机械力作用的非线性振动方程。  相似文献   

19.
弹性地基上加热弹性圆板的热过屈曲及临界屈曲模态跃迁   总被引:2,自引:0,他引:2  
李世荣  郁汶山 《工程力学》2007,24(5):63-66,28
基于von Kármán薄板理论建立了Winkler弹性基础上弹性圆板在均匀升温下的轴对称热过屈曲控制方程。这是一组以中面位移为基本未知量的非线性常微分方程,其中包含了温度载荷和弹性地基刚度两个参数。采用打靶法数值求解相应的非线性两点边值问题,获得了周边不可移简支圆板的热屈曲及热过屈曲响应。绘出了前三阶屈曲模态对应的临界温度载荷随地基参数连续变化的特性曲线,获得了反映临界热屈曲模态跃迁特性的地基参数值。给出了弹性圆板按一阶模态失稳后的热过屈曲平衡路径和平衡构形,分析了地基刚度参数对临界屈曲温度载荷以及过屈曲平衡构形的影响。  相似文献   

20.
The post-buckling response of thin plates made of linear viscoelastic materials is investigated. The employed viscoelastic material is described with fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plate element, are three coupled nonlinear fractional partial evolution type differential equations in terms of three displacements. The nonlinearity is due to nonlinear kinematic relations based on the von Kármán assumption. The solution is achieved using the analog equation method (AEM), which transforms the original equations into three uncoupled linear equations, namely a linear plate (biharmonic) equation for the transverse deflection and two linear membrane (Poisson’s) equations for the inplane deformation under fictitious loads. The resulting initial value problem for the fictitious sources is a system of nonlinear fractional ordinary differential equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term nonlinear fractional differential equations. The numerical examples not only demonstrate the efficiency and validate the accuracy of the solution procedure, but also give a better insight into this complicated but very interesting engineering plate problem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号