首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free vibration analysis of functionally graded material sandwich plates is studied using a refined higher order sandwich panel theory. A new type of FGM sandwich plates, namely, both functionally graded face sheets and functionally graded flexible core are considered. The functionally graded material properties follow a power-law function. The first order shear deformation theory is used for the face sheets and a 3D-elasticity solution of weak core is employed for the core. On the basis of continuities of the displacements and transverse stresses at the interfaces of the face sheets and the core, equations of motion are obtained by using Hamilton’s principle. The accuracy of the present approach is validated by comparing the analytical results obtained for a degradation model (functionally graded face sheets and homogeneous flexible core) with ones published in the literatures, as well as the numerical results obtained by finite element method and good agreements are reached. Then, parametric study is conducted to investigate the effect of distribution of functionally graded material properties, thickness to side ratio on the vibration frequencies.  相似文献   

2.
The dynamic instability of functionally graded material (FGM) sandwich plates under an arbitrary periodic load in a thermal environment is studied. The sandwich plate is made up of two layers of FGM face sheets and one layer of homogeneous metal core. The properties of a FGM layer vary continuously across the thickness according to a simple power law. A set of differential equations of Mathieu type is formed to determine the dynamic instability regions based on Bolotin's method. The dynamic stability of the FGM sandwich plates is sensitive to the temperature rise, volume fraction index, thickness ratio, and static and dynamic load factor.  相似文献   

3.
This article deals with the study of low velocity impact response on sandwich plates with functionally graded face sheets. High-order sandwich plate theory is improved by considering the in-plane stresses of the core that usually are ignored in the analysis of sandwich structures. A new approach is used to reduce the equations of motion from 27 equations to 15 equations and then solving them for both unsymmetric and symmetric sandwich plates. The model is also checked by finite element simulation and by comparing with other references for validation. A parametric study is done for various geometrical and mechanical properties.  相似文献   

4.
In this article, a new five-variable refined plate theory for the free vibration analysis of functionally graded sandwich plates is developed. By dividing the transverse displacement into bending, shear, and thickness stretching parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or more in the case of other shear and normal deformation theories. The theory accounts for hyperbolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using a shear correction factor. Two common types of functionally graded material (FGM) sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The equations of motion are obtained using Hamilton's principle. Numerical results of the present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the free-vibration response of functionally graded sandwich plates.  相似文献   

5.
The thermoelastic bending analysis of functionally graded ceramic–metal sandwich plates is studied. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson’s ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The influences played by the transverse normal strain, shear deformation, thermal load, plate aspect ratio, side-to-thickness ratio, and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal–ceramic plates are investigated.  相似文献   

6.
In the present study, the thermal stability of laminated functionally graded (FGM) circular plates of variable thickness subjected to uniform temperature rise based on the first-order shear deformation plate theory is presented. Furthermore, two models for FGM plates with variable thickness, corresponding with two manufacturing methods, are proposed. The laminated FGM plate with variable thickness is considered as a sandwich plate constituted of a homogeneous core of variable thickness and two constant thickness FGM face sheets whose material properties are assumed to be graded in the thickness direction according to a simple power law. In order to determine the distribution of the prebuckling thermal load along the radius, the membrane equation is solved using the shooting method. Subsequently, employing the pseudo-spectral method that makes use of Chebyshev polynomials, the stability equations are solved numerically to evaluate the critical temperature rise. The results demonstrate that the thermal stability is significantly influenced by the thickness variation profile, aspect ratio, the volume fraction index, and the core-to-face sheet thickness ratio.  相似文献   

7.
A discrete layer approach coupled with the differential quadrature method (DQM) is employed to temperature dependent analyze the laminated functionally graded (FG) annular plates under mechanical loading in a thermal environment. The formulations are derived based on the elasticity theory, which includes the effects of the initial thermal stresses and two-parameter elastic foundation. The material properties are assumed to be temperature-dependent and graded in the thickness direction. In order to accurately evaluate the effect of the thermal environment, the initial thermal stresses are obtained by solving the thermoelastic equilibrium equation. Comparison studies with the available solutions in the literature for FG plates are performed. Then, as an application, three common types of FG sandwich plates, namely, the sandwich with homogeneous face sheets and FG core and the sandwich with FG face sheets and homogeneous metal (soft) and ceramic (hard) core are analyzed. The influences of temperature rise, temperature-dependence of material properties, layers lay-out, foundation stiffness parameters, material graded index, and geometrical parameters on the solution are carried out. The new results can be used as benchmark solutions for future researches.  相似文献   

8.
In this paper, a dynamic solution for the propagating viscoelastic waves in functionally graded material (FGM) plates subjected to stress-free conditions is presented in the context of the Kelvin–Voigt viscoelastic theory. The FGM plate is composed of two orthotropic materials. The material properties are assumed to vary in the thickness direction according to a known variation law. The three obtained wave equations are divided into two groups, which control viscoelastic Lamb-like wave and viscoelastic SH wave, respectively. They are solved respectively by the Legendre orthogonal polynomial series approach. The validity of the method is confirmed through a comparison with the Lamb wave solution of a pure elastic FGM plate and a comparison with the SH wave solution of a viscoelastic homogeneous plate. The dispersion curves and attenuation curves for the graded and homogeneous viscoelastic plates are calculated to highlight their differences. The viscous effect on dispersion curves is shown. The influences of gradient variations are illustrated.  相似文献   

9.
Large deflection analysis of rectangular functionally graded plates is studied in this paper. It is assumed that the mechanical properties of the plate, graded through the thickness, are described by a simple power law distribution in terms of the volume fractions of constituents. The plate is assumed to be under pressure load. The fundamental equations for rectangular plates of FGM are obtained using the Von-Karman theory for large deflection and the solution is obtained by minimization of the total potential energy. Numerical results for rectangular functionally graded plates are given in dimensionless graphical forms. The effects of material properties on the stress field through the thickness are determined and discussed.  相似文献   

10.
Variations of stresses of a thin circular functionally grade plate, due to large vibration amplitudes, are developed in this paper. The plate thickness is constant and temperature dependent functionally graded material (FGM) properties vary through the thickness of the plate. For harmonic vibrations, governing equations are solved. Corresponding results are illustrated in the case of steady-state free vibration. The results show that the variation of volume fraction index is considerable in FGM properties and the amount of stresses.  相似文献   

11.
Based on the state‐space formalism, a three‐dimensional analysis is presented for orthotropic functionally graded rectangular plates with simply supported edges under static and dynamic loads. The material properties are assumed to be variable through the thickness. The governing equations for the functionally graded material (FGM) are developed on the state‐space approach in the Laplace transform domain. Assuming constant material properties, we derive the analytical solutions that can be used to validate any numerical methods. For FGM plates, the numerical solutions are obtained by the use of radial basis function method. Three examples are presented for the FGMs and laminated composite. The accuracy of the proposed numerical technique has been compared with the exact solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Accurate zigzag theory is presented for static and free vibration analysis of multilayered functionally graded material (FGM) cylindrical shells and rectangular plates by approximating inplane displacements as a combination of linear layerwise and cubic global terms. Governing equations of motion are derived using Hamilton’s principle. The theory yields accurate results for displacements, stresses and natural frequencies in simply-supported functionally graded multilayered cylindrical shell panels and rectangular plates. Effect of changing the volume fraction ratio, aspect ratio and thickness of FGM layer between two homogeneous layers are investigated for a number of multilayered shell and plate laminates.  相似文献   

13.
The sinusoidal shear deformation plate theory is used to study the thermal buckling of functionally graded material (FGM) sandwich plates. This theory includes the shear deformation and contains the higher- and first-order shear deformation theories and classical plate theory as special cases. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Several kinds of symmetric sandwich plates are presented. Stability equations of FGM sandwich plates include the thermal effects. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio, loading type and sandwich plate type on the critical buckling for sandwich plates.  相似文献   

14.
分布载荷作用下简支功能梯度夹层板的弯曲分析   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了四边简支具有功能梯度芯材的夹层板在分布载荷作用下的弯曲问题。基于Reissner假设, 根据功能梯度材料的本构方程得出了应力、位移及内力的表达式, 得到功能梯度夹层板的平衡方程; 针对四边简支的边界条件, 通过将挠度 w 与横向剪力 QxQy 用双三角级数展开的方法, 求解平衡方程。采用本文方法分别求解了均布载荷作用下、芯材弹性模量线性变化的功能梯度夹层板与芯材为均质各向同性材料的夹层板的弯曲挠度, 并通过与经典解及有限元解进行比较, 证明了本文方法的正确性。  相似文献   

15.
Nonlinear vibration, nonlinear bending and postbuckling analyses are presented for a sandwich plate with FGM face sheets resting on an elastic foundation in thermal environments. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both FGM face sheets and homogeneous core layer are assumed to be temperature-dependent. The numerical results reveal that the foundation stiffness and temperature rise have a significant effect on the natural frequency, buckling load, postbuckling and nonlinear bending behaviors of sandwich plates. The results also reveal that the core-to-face sheet thickness ratio and the volume fraction distribution of FGM face sheets have a significant effect on the natural frequency, buckling load and postbuckling behavior of the sandwich plate, whereas this effect is less pronounced for the nonlinear bending, and is marginal for the nonlinear to linear frequency ratios of the same sandwich plate.  相似文献   

16.
Functionally graded material (FGM) is a promising heat insulation material. Wave propagation in FGM structures has received much attention for the purpose of non-destructive testing and evaluation. Few literatures dealt with the thermoelastic wave in FGM structures although the thermal effect would cause attenuations of elastic waves. In this paper, guided thermoelastic waves in FGM plates subjected to stress-free, isothermal boundary conditions are investigated in the context of the Green–Lindsay (GL) generalized thermoelastic theories (with two relaxation times). Coupled wave equations and heat conduction equation are solved by the Legendre polynomial approach. Dispersion curves for a pure elastic graded plate are calculated to make a comparison with the published data. For the thermoelastic graded plate, dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Attenuation curves for graded plates with different relaxation times are compared. The influences of different material gradient shapes are discussed. Two homogeneous thermoelastic plates with different volume fractions are obtained to show their differences from graded plates. Finally, thermoelastic wave dispersion curves for a homogeneous plate and a graded plate are calculated in the context of the classical coupled thermoelastic theory (CT) to show its differences and similarities to the generalized theory.  相似文献   

17.
A meshfree model is presented for the static and dynamic analyses of functionally graded material (FGM) plates based on the radial point interpolation method (PIM). In the present method, the mid-plane of an FGM plate is represented by a set of distributed nodes while the material properties in its thickness direction are computed analytically to take into account their continuous variations from one surface to another. Several examples are successfully analyzed for static deflections, natural frequencies and dynamic responses of FGM plates with different volume fraction exponents and boundary conditions. The convergence rate and accuracy are studied and compared with the finite element method (FEM). The effects of the constituent fraction exponent on static deflection as well as natural frequency are also investigated in detail using different FGM models. Based on the current material gradient, it is found that as the volume fraction exponent increases, the mechanical characteristics of the FGM plate approach those of the pure metal plate blended in the FGM.  相似文献   

18.
In this article, an exact analytical solution for buckling analysis of moderately thick functionally graded (FG) sector plates resting on Winkler elastic foundation is presented. The equilibrium equations are derived according to the first order shear deformation plate theory. Because of the coupling between the bending and stretching equilibrium equations of FG plates, these plates have deflection under in-plane loads lower than the critical buckling load acting on the mid-plane. The conditions under which FG plates remain flat in the pre-buckling configuration are investigated and the stability equations are obtained based on the flat plate assumption in the pre-buckling state. The stability equations are simplified into decoupled equations and solved analytically for plates having simply supported boundary condition on the straight edges. The critical buckling load is obtained and the effects of geometrical parameters and power law index on the stability of functionally graded sector plates are studded. The results for the critical buckling load of moderately thick functionally graded sector plates resting on elastic foundation are reported for the first time.  相似文献   

19.
The nonlinear behavior of functionally graded materials (FGM) plates exposed to a high temperature environment on one side of the surface is investigated here using neutral surface-based first-order shear deformation theory. The material considered here is graded in the thickness direction and a simple power law based on the rule of mixture is introduced to study the temperature dependent effective material properties. Furthermore, the position of thermal stress-resultant is determined based on realistic temperature field across the thickness of the plate whereas the reaction resultant is assumed to act along the mid-surface. The nonlinear governing equations derived based on von Kármán assumptions are solved using Newton–Raphson technique to analyze the nonlinear behavior of FGM plates under different temperature gradient.  相似文献   

20.
A numerical method is proposed for analysing transient waves in plates of functionally graded material (FGM) excited by impact loads. The material properties of the FGM plate have a gradient in the thickness direction and are anisotropic in the plane of the plate. In the present method, the FGM plate is divided into layer elements in the thickness direction. For an accurate modelling of the variation of the material property of FGM plates, it is expressed by second‐order polynomials in the thickness direction within an element. This can further reduce the number of elements to obtain more accurate results effectively. The principle of virtual work is used to develop approximate dynamic equilibrium equations. The displacement response is determined by employing the Fourier transformation and the modal analysis. As examples, the displacement response of FGM plates excited by line, point and distributed loads is calculated. The computations have shown the efficiency of the present method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号