首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

2.
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.  相似文献   

3.
We report herein a kinetic and thermodynamic study of the adsorption of azo-dye Orange II from aqueous solutions onto titania aerogels. Aerogels structure was confirmed by FTIR and N2 adsorption revealed their specific surface area (500 m2/g), pore volume (2.86 cm3/g) and pore size (mean 13.9 nm). Adsorption tests were conducted in batch reactors under various conditions where the effect of pH, temperature, contact time, dye concentration, and adsorbent dose were studied. Experiments performed at pH 2 show the optimal adsorption due to the best surface charge interactions. The temperature shows a weak influence with a decrease in the adsorption uptake as the temperature increases. Adsorption kinetics is shown to be very fast and follows a pseudo second-order indicating the coexistence of chemisorption and physisorption with the intra-particle diffusion being the rate controlling step. The experimental data fit perfectly with Sips isotherms and reveal the ability of titania aerogel to adsorb 420 mg of Orange II per gram of adsorbent at the optimal conditions. The thermodynamic study reveals the activation energy (42.1 kJ mol−1) and the changes in Gibbs free energy (1.2 kJ mol−1), enthalpy (−16.4 kJ mol−1), and entropy (−58 J mol−1 K−1). The entire regeneration of the titania aerogel adsorption sites at pH 11 and 30 °C shows a total recovery of the dye and the efficient reusability and the economic interest of these adsorbing materials for environmental purposes.  相似文献   

4.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

5.
Chitosan, a natural biopolymeric cation, is a candidate to modify montmorillonite for the adsorption of anions. As an anionic organic pollutant the adsorption of tannic acid was studied. Because of protonation/deprotonation reactions of both chitosan-montmorillonite and tannic acid, the adsorption process is strongly pH-dependent. The objective of this work is to characterize the pH dependency of adsorption in combination with surface charge determinations.Montmorillonite was modified with different amounts of chitosan, corresponding to 20–1000% of the cation exchange capacity (CEC). The deacetylation degree of chitosan was determined by polyelectrolyte titration and was found to be 74%. The uptake of chitosan was determined by the C-content. The interlayer expansion was investigated by X-ray powder diffraction. The adsorption capacity for tannic acid was investigated with the batch technique at pH 3, 4, 5 and 8. As a measure for the adsorption properties, the electrokinetic surface charge was determined with a particle charge detector.The uptake of chitosan by montmorillonite is up to 152% (1.69 molc kg− 1) of the CEC. The resulting anion exchange capacity of chitosan-montmorillonite calculated from C-content is 0.43 molc kg− 1. At low loadings with chitosan (24.7 and 49.5% uptake), a monolayer is formed in montmorillonite. At an uptake of 96.8%, a bilayer structure is observed, which becomes more dominant at higher loadings. On the external surface, a monolayer of chitosan was formed. From pH 4 to 8, the surface charge of all modified montmorillonites is with − 9 to 8 mmolc kg− 1 close to the point of zero charge. The maximal adsorption capacity for tannic acid is found with 240 g kg− 1 (0.14 molc kg− 1) at pH 4. The adsorption process fits in well with the Freundlich isotherm. At lower as well as higher pH values the adsorption capacity decreases up to about 25%. Most probably the exchange sites in the interlayer do not contribute to the adsorption of tannic acid. The observed surface charge is lower than the adsorbed amount of tannin. It is thought that tannin is adsorbed also by van der Waals forces besides ionic forces.  相似文献   

6.
Titania-supported gold catalysts are extremely active for room temperature CO oxidation; however, deactivation is observed over long periods of time under our reaction conditions Impregnated AuTiO2 is most active after a sequential pretreatment consisting of high temperature reduction at 773 K, calcination at 673 K and low temperature reduction at 473 K (HTR/C/LTR); the activity after either only low temperature reduction or calcination is much lower. A catalyst prepared by coprecipitation had much smaller Au particles than impregnated AuTiO2 and was active at 273 K after either an HTR/C/LTR or a calcination pretreatment. Deposition of TiOx overlayers onto an inactive Au powder produced high activity; this argues against an electronic effect in small Au particles as the major factor contributing to the activity of AuTiO2 catalysts and argues for the formation of active sites at the AuTiOx interface produced by the mobility of TiOx species. DRIFTS (diffuse reflectance FTIR) spectra of impregnated AuTiO2 reveal the presence of weak reversible CO adsorption on the Au surface but not on the TiO2; however, a band for adsorbed CO is observed on the pure TiO2. Kinetic studies with a 1.0 wt.-% impregnated AuTiO2 sample showed a near half-order rate dependence on CO and a near zero-order rate dependence on O2 between 273 and 313 K with an activation energy near 7 kcal/mol. A two-site model, with CO adsorbing on Au and O2 adsorbing on TiO2, is consistent with Langmuir-Hinselwood kinetics for noncompetitive adsorption, fits partial pressure data well and shows consistent enthalpies and entropies of adsorption. The formation of carbonate and car☐ylate species on the titania surface was detected but it appears that these are spectator species. DRIFTS experiments under reaction conditions also show the presence of weak, reversible adsorption of CO2 (near 2340 cm−1) which may be competing with CO for adsorption sites.  相似文献   

7.
The adsorption of cationic polymer, i.e., epicholorohydrin-dimethylamine polyamine (EPI-DMA), on bentonite particles was investigated under various conditions of bulk polymer concentration, pH, inorganic salts, and temperature. The resulting high adsorption rate and alkaline solution (pH = 7–11) effect indicated a strong electrostatic interaction between the clay particles and EPI-DMA molecules. Addition of salt can also influence the adsorption of EPI-DMA onto bentonite by affecting the clay particle sizes, the polymer zeta potential and etc. The Freundlich and Langmuir isotherm models were employed and fit the experimental data well in the low EPI-DMA concentration range 0.5–5.0 mg L− 1. The enthalpy implied by the temperature dependence of adsorption of EPI-DMA on bentonite is 7.93 kJ mol− 1, suggesting that neither coordination exchange nor chemical bond forces exit in this system. In addition, at high temperatures, larger amounts of EPI-DMA were adsorbed by bentonite, which indicated that increased entropy in the dissolved EPI-DMA molecules contributes to adsorption. The X-ray diffraction (XRD) analysis showed that besides the EPI-DMA molecules intercalated between the layers of bentonite, excess polymer molecules were adsorbed onto polymer loops protruding from the surface of the complex. The TGA and corresponding DSC plots demonstrated that the EPI-DMA polymer had intercalated into the clay layers and thus the EPI-DMA/bentonite was more hydrophobic than natural bentonite. With the addition of EPI-DMA polymer, the negatively charged clay particles increased to a net positive charge and the capacity for dye removal also went up with increasing polymer contents in EPI-DMA/bentonite complexes.  相似文献   

8.
Nanosized gold catalysts supported on doped ceria were prepared by deposition–precipitation method. A deep characterization study by HRTEM/EDS, XRD, FT-Raman, TPR and FTIR was undergone in order to investigate the effect of ceria modification by various cations (Sm3+, La3+ and Zn2+) on structural and redox properties of gold catalysts. Doping of ceria affected in different way catalytic activity towards purification of H2 via preferential CO oxidation. The following activity order was observed: Au/Zn–CeO2 > Au/Sm–CeO2 > Au/CeO2 > Au/La–CeO2. The differences in CO oxidation rates were ascribed to different concentration of metallic gold particles on the surface of Au catalysts (as confirmed by the intensity of the band at 2103 cm−1 in the FTIR spectra collected during CO–O2 interaction). Gold catalysts on modified ceria showed improved tolerance towards the presence of CO2 and H2O in the PROX feed. The spectroscopic experiments evidence enhanced reactivity when PROX is performed in the presence of H2O already at 90 K.  相似文献   

9.
The lead adsorption from aqueous solution was studied in batch experiments using two typical Indian origin nickel lateritic ores having high (46.29%) and low iron content (28.56%) coded as NH and NL respectively. The adsorption was found to be strongly dependent on pH of the medium showing increase in uptake of Pb(II) from 11.0 to 53% and 8.2 to 44% for NH and NL samples respectively with the increase in pH in the range of 2.0–5.23. The time data generated at different temperatures for both the samples fitted well to second-order kinetic model and Elovich equation. The later is indicative of a chemisorption process. The +ve ΔH° values (8.90 and 10.29 kJ mol−1 for NH and NL samples) support the endothermic nature of adsorption. The +ve ΔS° values (28.56 and 29.40 kJ mol−1 K−1 for NH and NL respectively) suggest that the adsorption occurs with internal structural changes. The activation energy was estimated to be 7.6 and 3.12 kJ mol−1 for NH and NL respectively. The thermodynamic activation parameters were also evaluated using Eyring equation. The loading capacities of NH and NL were estimated to be 44.4 and 28.45 mg g−1 respectively under the experimental conditions: adsorbent concentration 2 g l−1, time 30 min, temperature 308 K and pH 5.23. Data fitted well to Langmuir and Freundlich isotherm models for NH while in case of NL only Langmuir isotherm showed good fit. Due to high loading capacities and favorable kinetics, these materials can be utilized for Pb(II) removal from aqueous solutions.  相似文献   

10.
Variable-temperature infrared spectroscopy was used for a thermodynamic study on hydrogen adsorption on the zeolite Ca-Y. Adsorption renders the H–H stretching mode infrared active, at 4078 cm−1; and simultaneous measurement of IR absorbance and hydrogen equilibrium pressure, over a range of temperature, allowed standard adsorption enthalpy and entropy to be determined. They resulted to be ΔH°= −15.0(±1.0) kJ mol−1 and ΔS° = −127(±10) J mol−1 K−1, respectively. These relatively high values of adsorption enthalpy and entropy are discussed in the broader context of corresponding data for other hydrogen adsorbents.  相似文献   

11.
A parametric study was conducted over Pt–Ni/δ-Al2O3 to explore the effect of Pt and Ni contents on the ethanol steam reforming characteristics of the bimetallic catalyst. Experiments with catalysts having 0.2–0.3 wt%Pt and 10–15 wt%Ni contents indicated that the best ethanol steam reforming performance is achieved over 0.3 wt%Pt–15 wt%Ni/δ-Al2O3. Kinetics of ethanol steam reforming was studied over this catalyst in the 673–823 K interval using differential and integral methods of data analysis. A power-function rate expression was obtained with reaction orders of 1.01 and −0.09 in ethanol and steam, respectively, and the apparent activation energy of ethanol steam reforming over 0.3 wt%Pt–15 wt%Ni/δ-Al2O3 was calculated as 59.3 ± 2.3 kJ mol−1.  相似文献   

12.
PTFE-F-PbO2 电极在H2SO4溶液中的析氧行为   总被引:1,自引:0,他引:1  
F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. The electrochemical activities of these two electrodes for oxygen evolution (OE) reaction were examined by electrochemical tests. In comparison with F-PbO2, PTFE-F-PbO2 electrode exhibited larger active surface area and higher oxygen vacancy deficiency, which resulted in its higher electrocatalytic activity for OE. In addition, both exchange current density and activation energy of the electrodes for OE were calculated in terms of active surface area. The values of exchange current density and activation energy in 0.5 mol·L^-1 H2SO4 aqueous solution were 1.125×10^ -3 mA·cm^-2 and 18.62 kJ·mol^-1 for PTFE-F-PbO2, and 8.384×10^-4 mA·cm^- 2 and 28.98 kJ·mol^-1 for F-PbO2, respectively. Because these values are calculated on the basis of the active surface areas of the electrodes, the enhanced activity of PTFE-F-PbO2 can be attributed to an increase in oxygen vacancy deficiency of PbO2 due to doping by PTFE. The influence of PTFE adulteration on the activity of PbO2 film electrode for OE was investigated in detail in this study.  相似文献   

13.
γ-Al2O3 modified supports with bimodal pore-size distributions were prepared by the addition of different types of natural sepiolites (α or β) into alumina. The supports were characterized by nitrogen physisorption, mercury porosimetry, X-ray diffraction, HRTEM and DTA techniques. A wide range of SBET (94–238 m2 g− 1), pore volumes (0.3–0.82 cm3 g− 1), and pore sizes were obtained in the supports depending on the type of sepiolite and its concentration added into alumina. The pore sizes were distributed as follows: mesopores around 1.8 nm in radius, mesopores in the radius range 3.0–25 nm and macropores between 25 and 300 nm in radius. The shape of the pore-size distributions depended on the type of sepiolite: the modal peak for pores larger than 3.0 nm was broad with β-type sepiolites and narrow with α-type sepiolites. The mesopore and macropore sizes can be controlled by the type of sepiolite as well as its concentration added to alumina.  相似文献   

14.
The employment of mineral SrSO4 crystals and powders for preparing SrTiO3 compound was investigated, with coexistence of Ti(OH)4·4.5H2O gel under hydrothermal conditions, at various temperatures (150–250 °C) for different reaction intervals (0.08–96 h) in KOH solutions with different concentrations. The complete dissolution of the SrSO4 crystal occurred at 250 °C for 96 h in a 5 M KOH solution, resulting in the synthesis of SrTiO3 particles with two different shapes (peanut-like and cubic). In contrast, very fine SrTiO3 pseudospherical particles were crystallized when SrSO4 powders were employed as precursor. Variations on the SrTiO3 particle shape and size were found to be caused by the differences in the dissolution rate of the SrSO4 phase in the alkaline KOH solution. The crystallization of SrTiO3 particles was achieved by a bulk dissolution–precipitation mechanism of the raw precursors, and this mechanism was further accelerated by increasing the reaction temperature and concentration of the alkaline media. Kinetic data depicted that the activation energy required for the formation of SrTiO3 powders from the complete consumption of a SrSO4 single crystal plate under hydrothermal conditions, is 27.9 kJ mol−1. In contrast, when SrSO4 powders were employed (28–38 μm), the formation of SrTiO3 powder proceeded very fast even for a short reaction interval of 3 h at 250 °C in a 5 M KOH solution.  相似文献   

15.
The adsorption of asparagine (Asn) on a gold electrode from 0.1 M LiClO4 aqueous solutions was investigated. The experimental data obtained from ac impedance measurements were analyzed to determine the dependence of adsorption parameters, i.e. the standard Gibbs energy of adsorption (ΔG0), maximal value of surface excess concentration (Γmax) of Asn and parameter of interactions in the adsorbed layer (A) on the electrode potential. The relatively large value of Gibbs energy of adsorption (∼ −47 kJ mol−1) gives the evidence of a very strong adsorption of Asn at the polycrystalline Au electrode. The comparison of the adsorption behavior of Asn at the air/solution and the Au/solution interfaces points out to the significant electronic interactions of adsorbate molecules with the Au electrode, since the adsorption of Asn on a free surface (from the same solutions) is very week. The analysis of the electrochemical data as well as the infrared reflection absorption spectroscopy (IRAS) results reveal that Asn molecules are anchored to the Au surface through oxygen atoms of the carboxylate group COO and through the amide carbonyl group.  相似文献   

16.
Adsorption of cationic dye from aqueous solutions by activated carbon   总被引:1,自引:0,他引:1  
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.  相似文献   

17.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

18.
Simulation techniques have been employed to investigate the differences in the low energy adsorption configurations of ethene and ethane on the TiO2 supported and unsupported V2O5(001) surface. We find that the ethene molecule approaches much closer to thesupported V2O5(001) surface which is reflected in the 40 kj mol–1 higher adsorption energy. The low energy adsorption configuration located for ethane on the supported V2O5 shows that the molecule does not approach as close to the supported V2O5 surface as does ethene, resulting in the adsorption energy of ethane being 52 kJ mol–1 lower than that of ethene on the supported V2O5 surface.  相似文献   

19.
The oxidation of carbon monoxide in the presence of various concentrations of molecular hydrogen has been studied over a Au/TiO2 reference catalyst by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry. It is shown for the first time that H2 enhances the CO oxidation rate on Au/TiO2 without leading to any major loss of selectivity. Increasing the H2 pressure induces higher CO and H2 oxidation rates. Under H2-free conditions, the surface species detected are Auδ+–CO, Ti4+–CO, carbon dioxide and carbonates. Upon the addition of H2, Au0–CO, water and hydroxyl groups become the main surface species. The occurrence of a preferential CO oxidation mechanism involving HxOy species under the present experimental conditions is proposed.  相似文献   

20.
This paper presents some important results of the studies on preparation and catalytic properties of nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation, which are carried out at the Boreskov Institute of Catalysis (BIC) starting from 2001. The catalysts with a gold loading of 1–2 wt.% were prepared via deposition of Au complexes onto different aluminas by means of various techniques (“deposition-precipitation” (DP), incipient wetness, “chemical liquid-phase grafting” (CLPG), chemical vapor deposition (CVD)). These catalysts have been characterized comparatively by a number of physical methods (XRD, TEM, diffuse reflectance UV/vis and XPS) and catalytically tested for combustion of CO impurity (1%) in wet air stream at near-ambient temperature. Using the hydroxide or chloride gold complexes capable of chemical interaction with the surface groups of alumina as the catalyst precursors (DP and incipient wetness techniques, respectively) produces the catalysts that contain metallic Au particles mainly of 2–4 nm in diameter, uniformly distributed between the external and internal surfaces of the support granules together with the surface “ionic” Au oxide species. Application of organogold precursors gives the supported Au catalysts of egg shell type which are either close by mean Au particle size to what we obtain by DP and incipient wetness techniques (CVD of (CH3)2Au(acac) vapor on highly dehydrated Al2O3 in a rotating reactor under static conditions) or contain Au crystallites of no less than 7 nm in size (CLPG method). Regardless of deposition technique, only the Cl-free Au/Al2O3 catalysts containing the small Au particles (di ≤ 5 nm) reveal the high catalytic activity toward CO oxidation under near-ambient conditions, the catalyst stability being provided by adding the water vapor into the reaction feed. The results of testing of the nanodispersed Au/Al2O3 catalysts under conditions which simulate in part removal of CO from ambient air or diesel exhaust are discussed in comparison with the data obtained for the commercial Pd and Pt catalysts under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号