首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used gene disruption to isolate two talin (-/-) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of beta1 integrin, although levels of alpha5 and alphaV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (-/-) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (-/-) ES cells were able to assemble talin-containing focal adhesions. Both talin (-/-) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (-/-) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the beta1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for beta1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

2.
The bovine papillomavirus type 1 (BPV-1) E6 oncoprotein can transform fibroblasts and induce anchorage-independent growth and disassembly of the actin stress fibers. We have previously shown that the E6 protein interacts with the focal adhesion protein, paxillin, suggesting a direct role of E6 in the disruption of the actin cytoskeleton. We have now mapped the E6 binding sites on paxillin to the LD motif repeats region, which has been implicated in mediating paxillin binding to two other focal adhesion proteins, vinculin and the focal adhesion kinase. The five LD motif repeats identified in paxillin do not contribute equally to its interaction with E6. The first LD repeat is most critical for paxillin binding to E6 both in vitro and in vivo. Furthermore, the binding of recombinant wild-type E6 protein to paxillin blocked the interaction of several cellular proteins with paxillin, including vinculin and the focal adhesion kinase. A mutant E6 protein (H105) which does not bind to paxillin had no effect on the binding of these cellular proteins to paxillin. These data suggest that E6 disruption of the actin stress fibers occurs through blocking the interaction of paxillin with its cellular effectors such as vinculin and the focal adhesion kinase.  相似文献   

3.
The ubiquitously expressed Na-H exchanger NHE1 functions in regulating intracellular pH and cell volume. NHE1 activity is stimulated by hormones, growth factors, and activation of integrin receptors. We recently determined that NHE1 activity is also stimulated by activation of the low molecular weight GTPase RhoA and that increases in NHE1 activity are necessary for RhoA-induced formation of actin stress fibers. We now show that NHE1 acts downstream of RhoA to modulate initial steps in integrin signaling for the assembly of focal adhesions. Adhesion of CCL39 fibroblasts on fibronectin was markedly delayed in the presence of the NHE inhibitor ethylisopropylamiloride. In mutant PS120 cells, derived from CCL39 fibroblasts but lacking NHE1, adhesion was also delayed but was rescued in PS120 cells stably expressing NHE1. In the absence of NHE1 activity, cell spreading was inhibited, and the accumulation of integrins, paxillin, and vinculin at focal contacts was impaired. Additionally, tyrosine phosphorylation of p125(FAK) induced by integrin clustering was also impaired. Inactivation of RhoA with C3 transferase and inhibition of the Rho-kinase p160ROCK with the pyridine derivative Y-27632 completely abolished activation of NHE1 by integrins but not by platelet-derived growth factor. These findings indicate that NHE1 acts downstream of RhoA to contribute a previously unrecognized critical signal to proximal events in integrin-induced cytoskeletal reorganization.  相似文献   

4.
c-Cbl-associated protein, CAP, was originally cloned from a 3T3-L1 adipocyte cDNA expression library using full-length c-Cbl as a bait. CAP contains a unique structure, with three adjacent Src homology-3 (SH3) domains in the COOH terminus and a region sharing significant sequence similarity with the peptide hormone sorbin. Expression of CAP in NIH-3T3 cells overexpressing the insulin receptor induced the formation of stress fibers and focal adhesions. This effect of CAP expression on the organization of the actin-based cytoskeleton was independent of the type of integrin receptors engaged with extracellular matrix, whereas membrane ruffling and decreased actin stress fibers induced by insulin were not affected by expression of CAP. Immunofluorescence microscopy demonstrated that CAP colocalized with actin stress fibers. Moreover, CAP interacted with the focal adhesion kinase, p125FAK, both in vitro and in vivo through one of the SH3 domains of CAP. The increased formation of stress fibers and focal adhesions in CAP-expressing cells was correlated with decreased tyrosine phosphorylation of p125FAK in growing cells or upon integrin-mediated cell adhesion. These results suggest that CAP may mediate signals for the formation of stress fibers and focal adhesions.  相似文献   

5.
Assembly and modulation of focal adhesions during dynamic adhesive processes are poorly understood. We describe here the use of ventral plasma membranes from adherent fibroblasts to explore mechanisms regulating integrin distribution and function in a system that preserves the integration of these receptors into the plasma membrane. We find that partial disruption of the cellular organization responsible for the maintenance of organized adhesive sites allows modulation of integrin distribution by divalent cations. High Ca2+ concentrations induce quasi-reversible diffusion of beta1 integrins out of focal adhesions, whereas low Ca2+ concentrations induce irreversible recruitment of beta1 receptors along extracellular matrix fibrils, as shown by immunofluorescence and electron microscopy. Both effects are independent from the presence of actin stress fibers in this system. Experiments with cells expressing truncated beta1 receptors show that the cytoplasmic portion of beta1 is required for low Ca2+-induced recruitment of the receptors to matrix fibrils. Analysis with function-modulating antibodies indicates that divalent cation-mediated receptor distribution within the membrane correlates with changes in the functional state of the receptors. Moreover, reconstitution experiments show that purified alpha-actinin colocalizes and redistributes with beta1 receptors on ventral plasma membranes depleted of actin, implicating binding of alpha-actinin to the receptors. Finally, we found that recruitment of exogenous actin is specifically restricted to focal adhesions under conditions in which new actin polymerization is inhibited. Our data show that the described system can be exploited to investigate the mechanisms of integrin function in an experimental setup that permits receptor redistribution. The possibility to uncouple, under cell-free conditions, events involved in focal adhesion and actin cytoskeleton assembly should facilitate the comprehension of the underlying molecular mechanisms.  相似文献   

6.
Recent evidence has strongly suggested the involvement of Rho family small guanosine triphosphatases (GTPases) in Ras-induced transformation. To further clarify the role of Rho family GTPases in Ras-induced transformation, we examined the effects of dominant active or dominant negative forms of Rho family GTPases on the morphological changes induced by oncogenic Ras (RasV12) in Rat1 fibroblasts. The cells expressing RasV12 showed the severe disruption of actin stress fibers and cell adhesions. The coexpression of dominant active form of Rho (RhoV14) reverted not only the formation of stress fibers and focal adhesions but also cell-cell adhesions in Ras-transformed Rat1 cells. In addition, the coexpression of constitutively activated Rho-kinase, a downstream effector of Rho, restored the assembly of stress fibers and focal adhesions. Treatment of Ratl cells with lysophosphatidic acid, which is known to activate the Rho-Rho-kinase pathway, enhanced the stress fiber formation, whereas it failed to induce the stress fiber formation in the cells expressing RasV12. These results suggest that the Rho-Rho-kinase pathway may be inactivated in the cells expressing RasV12, and this may contribute to oncogenic Ras-induced transformation.  相似文献   

7.
AP-1 and AP-2 adaptors are recruited onto the TGN and plasma membrane, respectively. GTPgammaS stimulates the recruitment of AP-1 onto the TGN but causes AP-2 to bind to an endosomal compartment (Seaman, M.N.J., C.L. Ball, and M.S. Robinson. 1993. J. Cell Biol. 123:1093-1105). We have used subcellular fractionation followed by Western blotting, as well as immunofluorescence and immunogold electron microscopy, to investigate both the recruitment of AP-2 adaptors onto the plasma membrane and their targeting to endosomes, and we have also examined the recruitment of AP-1 under the same conditions. Two lines of evidence indicate that the GTPgammaS-induced targeting of AP-2 to endosomes is mediated by ADP-ribosylation factor-1 (ARF1). First, GTPgammaS loses its effect when added to ARF-depleted cytosol, but this effect is restored by the addition of recombinant myristoylated ARF1. Second, adding constitutively active Q71L ARF1 to the cytosol has the same effect as adding GTPgammaS. The endosomal membranes that recruit AP-2 adaptors have little ARF1 or any of the other ARFs associated with them, suggesting that ARF may be acting catalytically. The ARFs have been shown to activate phospholipase D (PLD), and we find that addition of exogenous PLD has the same effect as GTPgammaS or Q71L ARF1. Neomycin, which inhibits endogenous PLD by binding to its cofactor phosphatidylinositol 4,5-bisphosphate, prevents the recruitment of AP-2 not only onto endosomes but also onto the plasma membrane, suggesting that both events are mediated by PLD. Surprisingly, however, neither PLD nor neomycin has any effect on the recruitment of AP-1 adaptors onto the TGN, even though AP-1 recruitment is ARF mediated. These results indicate that different mechanisms are used for the recruitment of AP-1 and AP-2.  相似文献   

8.
The small GTPases Rho and Rac regulate actin filament assembly and the formation of integrin adhesion complexes to produce stress fibers and lamellipodia, respectively, in mammalian cells. Although numerous candidate effectors that might mediate these responses have been identified using the yeast two-hybrid and affinity purification techniques, their cellular roles remain unclear. We now describe a biological assay that allows components of the Rho and Rac signaling pathways to be identified. Permeabilization of serum-starved Swiss 3T3 cells with digitonin in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) induces both actin filament and focal adhesion complex assembly through activation of endogenous Rho and Rac. These responses are lost when GTPgammaS is added 6 min after permeabilization, but can be reconstituted using concentrated cytosolic extracts. We have achieved a 10,000-fold purification of the activity present in pig brain cytosol and protein sequence analysis shows it to contain moesin. Using recombinant proteins, we show that moesin and its close relatives ezrin and radixin can reconstitute stress fiber assembly, cortical actin polymerization and focal complex formation in response to activation of Rho and Rac.  相似文献   

9.
The beta-thymosins are a family of small proteins originally isolated from the thymus. Recently, two of the major mammalian isoforms, thymosin beta 4 (T beta 4) and thymosin beta 10 (T beta 10), are identified as significant actin monomer sequestering proteins which may be involved in regulating actin filament assembly. To study the cellular function of beta-thymosins, we have used isoform-specific antibodies to determine their concentration and intracellular distribution, and examined the effects of inducing overexpression of T beta 4 and T beta 10 on actin filament structures. Immunofluorescence labeling of peritoneal macrophages showed that both beta-thymosins are uniformly distributed within the cytoplasm. cDNA-mediated overexpression of beta-thymosins in CV1 fibroblasts induced extensive loss of phalloidin-stained actin stress fibers. Stress fibers in the cell center were more susceptible than those at the periphery. There was a decrease in the number of focal adhesions, as evidenced by a decrease in discrete vinculin staining and an increase in diffuse vinculin fluorescence. The majority of the transfected cells had normal shape in spite of extensive loss of actin filaments. Occasionally, cells overexpressing beta-thymosin were observed to divide. In these cells, beta-thymosin was excluded from the midbody which contains an actin filament-rich contractile ring. Our results indicate that T beta 4 and T beta 10 are functionally very similar and both are effective regulators of a large subset of actin filaments in living cells.  相似文献   

10.
EAST is a novel epidermal growth factor receptor (EGFR) substrate. It interacts with Eps15, another EGFR substrate which is involved in receptor endocytosis. In this study we show that EAST associates with focal adhesions and actin filaments. First, in immunofluorescence and electron microscopy analysis, an extensive codistribution of EAST with vinculin, paxillin and actin filaments was seen. Second, overexpression of the NH2 terminus of EAST led to a formation of actin-rich microspikes and membrane protrusions. Third, in cosedimentation assay EAST showed a direct association with actin. These results suggest that EAST is involved in the EGFR-regulated reorganization of the actin cytoskeleton and may be part of a link between cytoskeleton and endocytic machinery.  相似文献   

11.
Treatment of Swiss 3T3 cells with cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli and dermonecrotic toxin (DNT) from Bordetella bronchiseptica, which directly target and activate p21(rho), stimulated tyrosine phosphorylation of focal adhesion kinase (p125(fak)) and paxillin. Tyrosine phosphorylation induced by CNF1 and DNT occurred after a pronounced lag period (2 h), and was blocked by either lysosomotrophic agents or incubation at 22 degrees C. CNF1 and DNT stimulated tyrosine phosphorylation of p125(fak) and paxillin, actin stress fiber formation, and focal adhesion assembly with similar kinetics. Cytochalasin D and high concentrations of platelet-derived growth factor disrupted the actin cytoskeleton and completely inhibited CNF1 and DNT induced tyrosine phosphorylation. Microinjection of Clostridium botulinum C3 exoenzyme which ADP-ribosylates and inactivates p21(rho) function, prevented tyrosine phosphorylation of focal adhesion proteins in response to either CNF1 or DNT. In addition, our results demonstrated that CNF1 and DNT do not induce protein kinase C activation, inositol phosphate formation, and Ca2+ mobilization. Moreover, CNF1 and DNT stimulated DNA synthesis without activation of p42(mapk) and p44(mapk) providing additional evidence for a novel p21(rho)-dependent signaling pathway that leads to entry into the S phase of the cell cycle in Swiss 3T3.  相似文献   

12.
The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, alpha3-integrin, and a higher-molecular-weight form of beta1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.  相似文献   

13.
A panel of antibodies to the alphaIIbbeta3 integrin was used to promote adhesion of Chinese hamster ovary cells transfected with the alphaIIbbeta3 fibrinogen receptor. While some alphaIIbbeta3 antibodies were not able to induce p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation, all the antibodies equally support cell adhesion but not spreading and assembly of actin stress fibers. Absence of stress fibers was also obtained by plating on antibodies directed to the hamster beta1 integrin. In contrast, cells plated on matrix proteins spread organizing actin stress fibers. Treatment with phorbol esters phorbol 12-myristate 13-acetate (PMA) induced cells to spread on antibodies-coated dishes but not to organize actin in stress fibers. The combination of PMA and cytotoxic necrotizing factor 1 (CNF1), a specific Rho activator, induced cell spreading and organization of stress fibers. PMA or the combination of PMA and CNF1 also increases tyrosine phosphorylation of p125FAK in response to antibodies that were otherwise unable to trigger this response. These data show that: 1) matrix proteins and antibodies differ in their ability to induce integrin-dependent actin cytoskeleton organization (while matrix induced stress fibers formation, antibodies did not); 2) p125FAK tyrosine phosphorylation is insufficient per se to trigger actin stress fibers formation since antibodies that activate p125FAK tyrosine phosphorylation did not lead to actin stress fibers assembly; and 3) the inability of anti-integrin antibodies to trigger stress fibers organization is overcome by concomitant activation of the protein kinase C (PKC) and Rho pathways; PKC activation leads to cell spreading and Rho activation is required to organize actin stress fibers.  相似文献   

14.
Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Substituting GTP for GTPgammaS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 microM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1.GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37 degreesC, whereas AP-1 recruited with GTPgammaS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1. GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1.GTP first primes the Golgi membrane at 37 degreesC, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1.GTP hydrolysis point. Thus, hydrolysis of ARF1.GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.  相似文献   

15.
Phospholipase D (PLD) regulates cytoskeletal-dependent antimicrobial responses of myeloid leukocytes, including phagocytosis and oxidant generation. However, the mechanisms responsible for this association between PLD activity and the actin cytoskeleton are unknown. We utilized a cell-free system from U937 promonocytes to test the hypothesis that stimulation of PLD results in stable association of the activated lipase with the detergent-insoluble membrane skeleton. Plasma membrane and cytosol were incubated +/- guanosine 5'-3-O-(thio)triphosphate (GTPgammaS), followed by re-isolation and extraction of the washed membranes with octyl glucoside. The detergent-insoluble fraction derived from membranes incubated with GTPgammaS (DIFGTPgammaS) exhibited 22-fold greater PLD activity than that derived from control membranes (DIF0), when both were assayed in the presence of GTPgammaS. The DIF contained PLD1, RhoA, and ARF, and the level of each was increased by GTPgammaS in a dose-dependent manner. The DIF also contained F-actin, vinculin, talin, paxillin, and alpha-actinin, consistent with its identification as the membrane skeleton. The physiologic relevance of these findings was demonstrated by a similar increase in DIF-associated PLD activity after stimulation of intact U937 cells with opsonized zymosan. These results indicate that stimulation of PLD1 is accompanied by stable association of the activated lipase, RhoA, and ADP-ribosylation factor with the actin-based membrane skeleton.  相似文献   

16.
17.
Bordetella dermonecrotizing toxin causes assembly of actin stress fibers and focal adhesions in some cultured cells and induces mobility shifts of the small GTP-binding protein Rho on electrophoresis. We attempted to clarify the molecular basis of the toxin action on Rho. Analysis of the amino acid sequence of toxin-treated RhoA revealed the deamidation of Gln-63 to Glu. The substitution of Glu for Gln-63 of RhoA by site-directed mutagenesis caused a mobility shift on electrophoresis, which was indistinguishable from that of the toxin-treated RhoA. Neither mutant RhoA-bearing Glu-63 nor toxin-treated RhoA significantly differed from untreated wild type RhoA in guanosine 5'-[gamma-thio]triphosphate binding activity but both showed a 10-fold reduction in GTP hydrolysis activity relative to untreated RhoA. C3H10T1/2 cells transfected with cDNA of the mutant RhoA bearing Glu-63 showed extensive formation of actin stress fibers similar to the toxin-treated cells. These results indicate that the toxin catalyzes deamidation of Gln-63 of Rho and renders it constitutively active, leading to formation of actin stress fibers.  相似文献   

18.
We examined alterations in cell morphology and expression of adhesion molecules in response to a general protein kinase inhibitor K252a treatment of non-adherent colon adenocarcinoma Colo201 cells. K252a induced rapid cell adhesion and spreading with concomitant formation of actin stress fibers. A protein kinase A inhibitor KT5720 also induced cell adhesion, but the rate of spread was slower than that seen with K252a. These adhesions were mediated by integrin molecules since cell adhesion required Mg2+, Mn2+ or Ca2+, and was inhibited by monoclonal antibodies for integrins alpha2 and beta1. Indirect immunofluorescence microscopic observations revealed that integrin alpha2 and beta1 molecules in K252a-treated cells were concentrated at sites of focal adhesion, but expressions of integrin molecules were not modulated. Tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin increased during K252a- or KT5720-induced cell adhesion. Immunosuppressants FK506 and cyclosporin A suppressed the K252a-induced cell adhesion and abolished tyrosine phosphorylation of cellular proteins including FAK and paxillin. Furthermore, W7 and calmidazolium, inhibitors of calmodulin, also inhibited the cell adhesion. Based on findings that FK506 and cyclosporin A are inhibitors of the calcium calmodulin-dependent protein phosphatase, calcineurin, this phosphatase may regulate integrin-dependent cell adhesion and spread of Colo201 cells. This Colo201 cell model provides a pertinent system for studying molecules involved in signal transduction pathways and can shed light on mechanisms of metastasis and invasion of colon carcinoma cells.  相似文献   

19.
Overnight culture of Swiss 3T3 cells in serum-free medium leads to loss of focal adhesions and associated actin stress fibres, although the cells remain well spread. The small GTP-binding protein Rho is required for the formation of stress fibres and focal adhesions induced by growth factors such as lysophosphatidic acid (LPA) in serum-starved Swiss 3T3 cells, and for the LPA-induced tyrosine phosphorylation of several focal adhesion proteins. Plating of cells on extracellular matrix proteins also stimulates protein tyrosine phosphorylation and the formation of stress fibres and focal adhesions in the absence of added growth factors. These responses were inhibited in cells scrape-loaded with the Rho inhibitor C3 transferase. Focal adhesion and stress fibre formation was also triggered by addition of a peptide GRGDS, which is recognised by a number of integrins and is contained within the cell binding domain of a variety of extracellular matrix proteins. The activity of the GRGDS peptide was blocked by microinjecting cells with C3 transferase, suggesting that peptide binding to integrins stimulates a Rho-dependent assembly of focal adhesions. These experiments indicate that Rho is involved in signalling downstream of integrins.  相似文献   

20.
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号