首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of alloy composition on the fillet-lifting phenomenon was investigated for Sn−Bi, Sn−Pb, and Sn−In binary alloys. Fillet-lifting occurs in Sn-(1–30%)Bi, Sn-(1–5%)Pb, Sn-(2–15%)In, but does not occur in pure Sn, Sn-(40–62%)Bi, Sn-(10–45%)Pb, and Sn-43 In. Fillet-lifting does not correlate with the formation of a Bi-concentrated layer at the solder/Cu land interface, previously thought to cause fillet-lifting. The solidification temperature range also does not necessarily correlate with fillet-lifting. Fillet-lifting was found to be related to the retention time (tr) for which solidus temperature (the final solidification temperature) remains by latent heat released during eutectic solidification in the cooling curve. The released latent heat contributes to the alleviation of the temperature gradient causing fillet-fifting in the solder joint. A fillet-fifting resistant index (FRI) is proposed as a new index for fillet-lifting, and correlates well with fillet-lifting occurrence rate in each of the studied tin binary alloys.  相似文献   

2.
The effect of microstructure obtained by rapid or slow solidification and cooling of a Sn-3.5%Ag lead-free solder alloy on the creep strength has been investigated. The rapidly cooled alloy showed that the microstructure consisted of the primarily crystallized Sn phase and the quasi-eutectic phase, where fine Ag3Sn particles dispersed in the Sn matrix. In the slowly cooled alloy, large platelets of Ag3Sn were formed sparsely in the Sn matrix. A difference of about 2.5 orders of magnitude in the cooling rate translates to about 1.5 orders of magnitude in the creep-rupture time. Accordingly, fine particle dispersion of Ag3Sn is considered to be very beneficial for the restraining of creep deformation, that is, for the decreasing of creep rate of the Sn-3.5%Ag alloy, compared with the effect of large platelets of Ag3Sn sparsely formed in the Sn matrix.  相似文献   

3.
Lead-free solders with excellent material properties and low cost are essential for the electronics industry. It has been proved that mechanical properties of SnAgCu alloys can be remarkably improved with a minute addition of rare earth (RE) elements. For comparison and optimization, three valuable solder candidates, Sn3.8Ag0.7Cu0.05RE, Sn3Ag0.5Cu0.05RE, and Sn2.9Ag1.2Cu0.05RE, were chosen due to the excellent properties of their own SnAgCu basic alloys. Wetting properties, melting temperature, bulk tensile properties, and joint tensile and shear properties were investigated. In addition, the microstructures of solder joints were observed and the effects of microstructure on mechanical properties were analyzed. Experimental results indicated that the tensile and shear strengths of solder joints were decreased from Sn3.8Ag0.7Cu0.05RE, Sn2.9Ag1.2Cu0.05RE, to Sn3Ag0.5Cu0.05RE, in order. Such difference in mechanical properties could be attributed to the influence of slightly coarse or strong Cu6Sn5 scallops in the reaction layer as well as superior eutectic network and large volume percentage of large primary intermetallic compounds (IMCs) inside the solder joints. It is also suggested that the size and volume percentage of large primary IMCs inside the solder be controlled. In addition, serration morphology was observed at the edge of large primary and eutectic IMCs in the three solder joints, which could be related to the content of Ag, Cu, and RE. The serration morphology was proved to be beneficial to mechanical properties theoretically. Furthermore, the three alloys investigated possessed similar wetting properties, melting temperatures, and bulk tensile properties.  相似文献   

4.
The materials used in the present research are pure Sn metal and Sn-0.5% Cu, Sn-3.5%Ag, Sn-0.3%Sb, and Sn-3.5%Ag-0.5%Cu alloys. Effects of Cu, Ag and Sb on the creep-rupture strength of lead-free solder alloys have been investigated. Creep tests are performed at the stress and temperature range of 3 to 12 MPa and 378 to 403 K, respectively. A 3.5% addition of Ag had the largest contribution to the creep-rupture strength of Sn metal among the single addition of 0.5%Cu, 3.5%Ag, and 0.3%Sb. The combined addition of 3.5%Ag and 0.5%Cu makes the largest creep-rupture strength. The effects of these elements on the microstructure of the lead-free alloys are also investigated with optical microscope (OM) and transmission electron microscope (TEM) observations.  相似文献   

5.
In this study, quantitative microstructure studies were performed on multiple length scales to investigate the effect of lanthanum (La) doping on Sn-Ag lead-free solder materials. Factors considered in this paper include doping amount, aging temperature, and aging time. It was found that La doping reduces the grain size significantly, and the reduced grain size remains stable during thermal aging. The size of the Ag3Sn particles is also greatly reduced by La doping, and the particles coarsen during thermal aging, albeit at a much reduced rate than in the undoped alloy. The rate of particle coarsening can be described by a cubic-root law. Another observation is that the interparticle spacing remains unaffected by the doping. Therefore, higher La doping level leads to higher volume fraction of the eutectic region due to the increased total number of Ag3Sn particles.  相似文献   

6.
In the present work, solidification cracks in Sn-Ag-Cu solder joints were investigated. Experimental results indicate that solidification cracks existed in significant numbers in the miniature Sn-Ag-Cu solder joints. In order to create solidification cracks in the miniature solder joints during solidification and evaluate the susceptibility of Sn-Ag-Cu alloys to solidification cracking, a copper self-restraint specimen was designed, which can simulate the process of solidification crack formation. The solidification crack susceptibility of the Sn-Ag-Cu solder alloy was evaluated using the total crack length of the solder joint. In addition, the effect of trace amounts of elemental additions on solidification cracking of Sn-Ag-Cu solder joints was studied. It was found that adding trace amounts of Ni or Ce could depress the solidification cracks in Sn-3.0Ag-0.5Cu solder joints. However, P additions aggravated the formation of solidification cracks.  相似文献   

7.
为了研究不同激光工艺参量对镁合金熔凝层组织和性能的影响,采用高功率快速扫描(13J/mm2~33J/mm2)和低功率慢速扫描(100J/mm2~250J/mm2)两套能量密度相差较大的激光熔凝技术对镁合金表面进行真空激光熔凝处理.结果表明,两套激光工艺处理下熔凝层均由?Mg和?Mg17Al12相所组成,但?Mg17Al12所占的比例在低功率慢速扫描下较高,约为16%;熔凝层组织均为典型的树枝晶,高功率快速扫描熔凝层枝晶尺寸远远小于低功率慢速扫描熔凝层的枝晶尺寸;在高功率快速扫描处理工艺下,熔凝层的硬度、耐磨性分别是低功率慢速扫描处理下熔凝层的1.5倍和3倍;高功率快速扫描处理下熔凝层的耐蚀性也较低功率慢速扫描处理下熔凝层的耐蚀性显著提高.  相似文献   

8.
旷云峰  黄灿  叶宏  喻文新  胡植 《激光杂志》2014,(10):124-126
采用激光合金化工艺在6061铝合金表面制备Al-Fe-Mn-Zn-Si合金化层,以期望提高铝合金表面性能。用扫描电镜(SEM)、X射线衍射仪(XRD)、电子显微硬度计、HSR-2M磨损试验机等材料表征手段分析了合金化层的组织结构与性能,研究结果表明:合金化层的晶相组织由结合区附近的柱状晶向表面的等轴晶过渡,且晶粒大小较基体明显细化,含有金属间化合物AlFe4Si、Al9Si、Mn5Si2以及面心立方的α-Al;激光合金化使铝合金表面硬度由104HV左右提高到了390HV左右;磨损试验结果表明,合金化层提高了铝合金表面的耐磨性。  相似文献   

9.
双温热处理TiAl基合金显微组织和相结构分析   总被引:1,自引:0,他引:1  
采用透射电子显微镜较详细地研究了双温热自理试样的显微组织结构特征。试验发现,由于多相TiAl基合金相界面间存在一定的位向关系,以及相析出和相转变在一定的惯习面和方向上发生,导致了相奕特征呈现多样性,从而得到复杂结构的显微组织。  相似文献   

10.
本文采用配备在扫描电镜中的EBSD系统及相应的取向分析和组织重构技术,对形变状态和退火状态下Zr合金的微观组织及织构演变规律进行了初步研究。结果表明,形变样品中晶粒细碎且不均匀,具有较为明显的形变带特征;织构主要为基面平行于轧面((0002)//Z)取向织构,同时还存在较多的{0001}(1010)和{0001}(1150)织构及{1104}(1102)织构。退火样品中晶粒均匀,基本为等轴晶,几种主要基面织构变化不大,但{1104}(1102)织构含量与形变样品相比提高了一倍以上。  相似文献   

11.
Solder joints were prepared from seven eutectic and near-eutectic Sn-based compositions and characterized for electrical resistivity after 100 h and 1,000 h of isothermal aging at 423 K. The solder joint samples were prepared by hand soldering to copper substrates, and the post-heat treatment resistivity was measured at room temperature in a specially designed, four-point probe fixture. Compositions tested included Sn-3.5Ag, Sn-3.7Ag-0.9Cu, Sn-3.0Ag-0.5Cu, Sn-3.6Ag-1.0Cu, and Sn-3.9Ag-0.6Cu. In addition, the effect of a minor addition of a fourth element, designed to improve high-temperature shear strength, was also evaluated in the compositions Sn-3.7Ag-0.6Cu-0.3Co and Sn-3.7Ag-0.7Cu-0.2Fe. The observed changes in electrical resistivity are discussed in terms of microstructural coarsening, diffusional transport from the substrate, and nucleation of precipitate phases.  相似文献   

12.
The electrical resistivity of solder joints prepared from Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-X alloys (where X = Co, Fe, or Bi) was characterized by a four-point probe technique and interpreted in terms of microstructure and composition. The resistivity is also reported of drawn solid wires of these alloys. The solder-joint samples were prepared by hand soldering to copper substrates and were electrically characterized over a temperature range from 293–423 K, covering the anticipated range of elevated-temperature operation for Pb-free solders. Selected joint specimens were measured before and after a 72-h heat treatment at 423 K. Metallographic inspection of the solder joints was performed to characterize coarsening effects and to determine the degree to which these changes affected electrical conduction.  相似文献   

13.
利用背散射电子衍射( EBSD)和透射电子显微镜( TEM)技术研究了含LPSO结构的Mg?1?1Y?0?4Nd?0?8Zn (at.%)合金中的孪晶形成特征。结果发现14H型LPSO结构的存在对压缩变形所生成孪晶类型影响不大,但会使孪晶板条尺寸减小且与板条边界交截产生台阶。受14H型LPSO结构存在的影响,(1012)孪晶表现出两种生长形态:在LPSO片层较窄且分布稀疏区域,孪晶可直接切过并使LPSO片层发生3?7°弯折;而在LPSO片层较厚其密度较高区域,孪晶无法穿越LPSO片层,但其可通过在随后片层的另一端重新形核生长方式继续进行传播。  相似文献   

14.
The formation and growth of intermetallic compounds (IMCs) in lead-free solder joints, during soldering or subsequent aging, have a significant effect on the thermal and mechanical behavior of solder joints. In this study, the effects of a 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu (SAC) lead-free solder alloys on the growth of IMCs with Cu substrates during soldering and subsequent isothermal aging were investigated. During soldering, it was found that a 0.2wt.%Zn addition did not contribute to forming the IMC, which was verified as the same phase structure as the IMC for Sn-3.0Ag-0.5Cu/Cu. However, during solid-state isothermal aging, the IMC growth was remarkably depressed by the 0.2 wt.% Zn addition in the SAC solder matrix, and this effect tended to be more prominent at higher aging temperature. The activation energy for the overall IMC growth was determined as 61.460 and 106.903 kJ/mol for Sn-Ag-Cu/Cu and Sn-Ag-Cu-0.2Zn/Cu, respectively. The reduced diffusion coefficient was confirmed for the 0.2Zn-containing solder/Cu system. Also, thermodynamic analysis showed the reduced driving force for the Cu6Sn5 IMC with the addition of Zn. These may provide the evidence to demonstrate the depressing effect of IMC growth due to the 0.2wt.%Zn addition in the Sn-Ag-Cu solder matrix.  相似文献   

15.
采用X射线衍射仪(XRD)和附带能谱仪(EDAX)的扫描透射电子显微镜(STEM)对Al-4.6Zn-0.9Mg合金三级时效工艺过程中强化相析出行为进行了系统研究.结果表明,100℃单级时效合金强度优于120℃单级时效;三级时效的再时效过程中,由于二级时效温度不同,合金内析出相的种类、尺寸及分布有显著差异;多级时效过程中如果二级时效温度位于300℃~400℃之间,第一级时效形成的析出相会溶解,且在再时效前期合金元素在晶界处显著偏聚,尽管在该回归温度区间内时效,很多析出相会溶解,但其中的合金元素并没有完全扩散开,依然留下了某种成份偏聚.这些偏聚的原子集团不能在后续再时效过程中重新形成GPⅡ区.这使得再时效时析出相成核数量很少但粗化速度非常快,材料强度偏低.  相似文献   

16.
应用透射电镜研究了快速凝固,常规凝固以及热处理后Mg97Zn1Y2合金中长周期堆垛结构(LPS)的形成、结构和变化特征.结果表明,快速凝固带状材料中,18R类型的LPS首先在网状第二相中形成,573 K时效20 h后,18R有向6H转变的趋势.铸态合金中LPS主要为6层堆垛结构,这种结构在573 K时效50 h后仍然保持稳定.铸态合金在823 K热处理10 h后,LPS趋于溶解,但镁基体中仍可现察到6层堆垛的LPS的存在.通过不同的凝固和热处理过程,可以获得不同结构和分布状态的LPS.  相似文献   

17.
扁平化对FeSiAl合金结构及电磁特性的影响   总被引:2,自引:0,他引:2  
通过球磨对气雾化FeSiAl合金粉末进行扁平化,并制备成软磁合金复合材料(SCM)。研究球磨时间对合金粉末微观形貌、显微结构以及1MHz~1GHz频率范围内SCM的复磁导率的影响。结果表明:随着球磨时间的增加,合金粉末的扁平率由1.18增大到7.01,粒径由50.36μm减小到33.31μm,平均晶粒尺寸由79.7nm减小到49.7nm,内应变由0.4252%增大到0.5974%;对合金粉末进行球磨可以明显提高SCM的μ′和μ″;随着球磨时间增加,SCM在同频率下的μ′和μ″均逐渐增大。  相似文献   

18.
为了研究FeSiAlCr片状合金微粉的超精细结构和材料饱和磁化强度的影响关系,本文对合金微粉进行了不同温度的退火处理,并对合金微粉进行XRD、穆斯堡尔谱测试。研究发现通过球磨法获得的片状合金微粉的晶体结构为A2结构(即α-Fe结构),经过高于500℃的氮气保护退火后转变为A2结构和D03超晶格结构。穆斯堡尔谱测试结果显示,使用湿法球磨方法得到的原始合金微粉具有连续分布的超精细磁场,经过高于500℃退火的合金微粉具有分立的超精细磁场,可以使用四种原子占位来进行拟合,显示出更高的有序度。同时,合金微粉的饱和磁化强度和平均超精细磁场有接近线性的关系,均随着退火温度的升高有明显提升。研究中还发现,在退火温度为600℃时,存在超精细磁场和饱和磁化强度的拐点,分析是由于在该温度点退火过程中产生了非磁性的B2相。  相似文献   

19.
激光冲击与渗铝复合处理对12CrMoV组织性能的影响   总被引:1,自引:5,他引:1  
利用高能短脉冲激光冲击技术对渗铝后的12CrMoV合金进行了复合处理,分析了处理后12CrMoV合金表层的界面成分分布及显微组织变化对其疲劳性能的影响.EDS分析表明:12CrMOV合金渗铝后获得了具有较高的热稳定性及抗高温氧化性能的铝化物涂层.复合处理形成的铝化物涂层硬度高,韧性较低,而且粗糙度增加,在疲劳过程中易产...  相似文献   

20.
理论分析和试验验证了热应力对软磁合金热处理后尺寸精度的影响和机加应力对磁性能的影响,提出了一种综合改善软磁合金热处理后磁性能和尺寸精度的方法:对软磁合金材料先半精加工,单边留量0.05mm,再进行磁性热处理,符合磁性能要求后精加工,并留一定的公差余量,最后进行磁性恢复热处理。该方法在保证软磁合金材料零件高尺寸精度的同时,可将机械加工引起的磁性能损失恢复36%~91%,使零件加工的合格率提高一倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号