首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
利用水热法在180℃条件下制备出ZnS微米球。通过X射线衍射、扫描电子显微镜、能谱、紫外-可见吸收光谱、荧光等测试手段对产物结构和形貌进行研究,结果表明该种方法制备的ZnS样品纯度较高,为球形微米结构,直径在1~3μm。并且讨论了ZnO微米哑铃的生长机理,研究了在紫外光作用下降解次甲基蓝光催化性能。  相似文献   

2.
以葡萄糖和醋酸锌为原料,采用模板法制备中空ZnO微球。并对所制样品进行表征,讨论了碳微球与醋酸锌物料比、煅烧温度、煅烧时间对ZnO催化剂光催化活性的影响。结果表明:在碳微球与醋酸锌物料比为1∶2、煅烧温度500℃、煅烧时间2h条件下,所制备的中空ZnO微球直径约为3~5μm,六方晶系结构,具有较好的光催化活性。  相似文献   

3.
采用水热/溶剂热法, 以Zn(Ac)2·2H2O和 CH4N2S为反应物合成ZnS微球。对ZnS微球进行X射线衍射(XRD)、扫描电镜(SEM)及紫外可见漫反射光谱等表征。结果表明, 合成的ZnS微球为立方闪锌矿型晶体结构, 由ZnS纳米粒子自组装而成。在降解苯酚水溶液的光催化研究中, 以乙二醇-水为溶剂合成的ZnS光催化活性明显优于其他溶剂体系合成的ZnS, 循环使用3次仍保持较高的活性。ZnS微球光催化性能的提高可归结为以下三方面的协同作用: 较小的禁带宽度(3.39 eV)有利于吸收光子, 较完整的晶体结构使催化剂活性分子数增多和较大的比表面积(19.4 m2/g)有利于反应液与催化剂的充分接触。ZnS微球降解苯酚的中间产物为乙二酸、顺丁烯二酸和极少量的对苯二酚。  相似文献   

4.
以谷氨酸-氟硼酸(GluBF4)离子液体水溶液为反应介质,以物质的量比为1∶6的二水合醋酸锌[Zn(Ac)2·2H2O]和NaOH为原料,室温下制备前驱体,再微波辅助加热制备了微/纳米ZnO粉体,获得了单一形貌较高比表面积微/纳米ZnO绒球。利用扫描电镜(SEM)、X射线衍射(XRD)、比表面(BET)、能谱(EDS)等对产物进行了结构与性能表征。所得产物为六方晶系纤锌矿结构,绒球直径在1.6~3.0μm之间,粒径平均尺寸20.4nm,绒球比表面积为28.3m2/g,产物纯度高,收率95.6%。该纳米材料在自然光下表现出较高的光催化活性和形态稳定性。分别配制浓度为10mg/L的100mL甲基橙(methylorange,MO)、溴甲酚绿(bromocresolgreen,BG)水溶液,30mg纳米ZnO为光降解催化剂,太阳光激发下5h脱色率分别达74.3%和86.4%,重复利用5次,催化剂形貌不变、重量未发生变化。  相似文献   

5.
以棉花纤维素为模板,Zn(CH_3COO)_2·9H_2O为原料,经高温煅烧制得具有纤维素管状结构的ZnO微/纳米材料。通过调整煅烧温度,优化了催化剂的制备工艺。运用XRD、SEM、FT-IR和UV-Vis DRS对催化剂样品进行结构表征,以亚甲基蓝(MB)为目标降解物,研究了该ZnO光催化剂在紫外光照下,不同制备温度对材料光催化性能的影响。研究表明,煅烧温度850℃的样品光催化活性最佳,反应60min对MB的降解率达97%。经过4段循环,光降解率仍维持在86%以上,表明此微/纳米ZnO是一种有效稳定的光催化剂。  相似文献   

6.
李镇江  张运搏  孟阿兰  邢静  胡居秀 《材料导报》2016,30(22):16-19, 25
以硝酸锌和六次甲基四胺为原料,水为溶剂,采用低温水热法制备出具有优异光催化性能的六方纤锌矿结构ZnO微纳米棒,并研究了合成过程中磁力搅拌及原料溶液浓度对制备产物形貌及光催化性能的影响,建立了其光催化降解甲基橙的动力学方程。结果表明,搅拌条件下制备的产物为纵向多孔的棒状ZnO,无搅拌条件下制备的产物为实心ZnO纳米棒.优选出的硝酸锌和六次甲基四胺浓度均为0.025mol/L。相比于实心ZnO纳米棒,纵向多孔的棒状ZnO具有更优异的光催化性能,在紫外光照射20min后,对甲基橙的降解率达到100%。通过动力学模型拟合发现,纵向多孔的棒状ZnO具有更大的催化速率常数(0.2942 min~(-1)),是实心ZnO纳米棒催化速率常数(0.1306min~(-1))的2.25倍。  相似文献   

7.
纳米ZnO因其优良的特性而在光催化、橡胶、医药和化妆品行业等方面有广泛的应用。采用水热法、直接沉淀法、固相法和溶胶-凝胶法等4种方法制备了纳米ZnO。利用X射线衍射仪对试样进行物相分析,使用jade软件进行数据分析,并计算分析样品的平均粒径,结果显示样品的粒径均小于50nm。使用甲基蓝和甲基橙作为光催化对象进行纳米ZnO的光催化实验,检测不同制备方法对所制纳米ZnO在阳光照射下光催化能力大小的影响,并通过紫外-可见分光光度计测试实验前后试剂的吸光度。结果表明纳米ZnO能催化甲基蓝和甲基橙褪色,且对甲基蓝的脱色效果更为显著。  相似文献   

8.
纳米TiO2微球的制备及光催化性能研究   总被引:5,自引:0,他引:5  
以钛酸四丁酯为前驱体,在油酸和正己烷的混合溶剂中,采用溶剂热技术成功地合成了纳米TiO2微球.以X射线衍射(XRD)、透射电镜(TEM)等方法对产物进行了表征,并对其光催化降解甲基橙溶液的性能进行了研究.实验结果表明:纳米TiO2微球的平均尺寸约为60nm,其中含有粒径平均约4.5nm的超细粒子.此种结构趋向于高的比表面积,与P-25型光催化剂相比,两者对甲基橙溶液的脱色具有相近的光催化活性.  相似文献   

9.
以硝酸锌、脲素及酒石酸为反应物, 采用水热法制备碱式碳酸锌前驱体微球, 通过煅烧前驱体制备了介孔氧化锌微球。通过扫描电子显微镜(SEM)可以观察到, 氧化锌微球的直径约为2~4 μm, 由大量厚度约为10 nm的介孔纳米片组装而成。X 射线衍射(XRD)和透射电镜(TEM)结果表明: ZnO微球为六方纤锌矿结构, 并结晶较好。比表面积测试(BET)表明ZnO微球为介孔材料, 孔径为20~50 nm, ZnO微球比表面积约为29.8 m2/g。以亚甲基蓝为目标降解物, 对介孔氧化锌微球进行了光催化降解实验。实验结果表明, 所合成的介孔ZnO微球对亚甲基蓝的光催化性能较好。  相似文献   

10.
纳米ZnO/Ag的制备及其光催化性能   总被引:8,自引:0,他引:8  
以Zn(CH3COO)2·2H2O和AgNO3为原料,丙烯酰胺为单体,N,N′-亚甲基双丙烯酰胺为交联剂,用高分子凝胶法在较低的温度下制备出纳米ZnO/Ag.对纳米ZnO/Ag的结构和性能进行了表征,并研究了它的光催化活性.结果表明:在这个方法中,利用丙烯酰胺自由基聚合反应,同时利用网络剂有两个活化双健的双功能团效应,将高分子链联结起来构成网络.高分子凝胶形成的极小且均匀的网络限制了ZnO/Ag晶粒之间的团聚.制备出的纳米ZnO/Ag粉料颗粒为球形,未被Ag包覆的纳米ZnO的平均粒径约15 nm,被Ag包覆的纳米ZnO的平均粒径约45 nm.在次甲基蓝水溶液中加入3 g/LZnO/Ag粉料后,次甲基蓝的降解率为100%.沉积贵金属Ag使ZnO纳米粉料的光催化活性得到了很大提高,且可以重复使用.  相似文献   

11.
氧化锌粉体的制备、表征及其光催化性能的研究   总被引:1,自引:1,他引:0  
以硝酸锌(Zn(NO_3)_2·6H_2O)、氢氧化钠(NaOH)为原料,在不同水热温度下(60℃、80℃、100℃、120℃、150℃、200℃)制备了不同形貌的氧化锌粉体(ZnO).运用X射线衍射仪(XRD)、扫描电镜(SEM)、紫外一可见漫反射仪以及光化学反应仪对其进行了表征.结果表明,随着水热温度的升高,氧化锌的结晶越来越完善,形貌也由球状变化到椭球状、片状再到六棱柱.氧化锌粉体在波长为200~400nm的紫外光范围内具有很强的吸收,在可见光区域的吸收很弱.光催化降解模拟实验表明,80℃下所制备的氧化锌的催化效果最好.  相似文献   

12.
13.
采用电化学阳极氧化法制备了高度有序的TiO2纳米管阵列,并利用纳米管的光致超亲水特性,采用斜面毛细组装技术在无定形TiO2表面自组装ZnO溶胶后退火制备了TiO2/ZnO复合纳米管.探讨了阳极氧化各参数对纳米管形貌的影响.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)等方法对样品的结构和形貌进行了表征.以有机磷农药氯胺磷为光催化降解对象,研究了焙烧温度、管径、管长和TiO2/ZnO复合比例等因素对降解效果的影响.结果表明,焙烧温度、管径以及ZnO复合比例对光催化降解率影响较大.对于管径97 nm、管长315.8nm的TiO2/ZnO纳米管,ZnO最佳复合比例为4.2%(质量分数),5 h后降解率达到78%.  相似文献   

14.
就纳米晶粒TiO2多孔微球的合成方法、主要物理参量及表征方法作了详细评述,针对存在的问题,提出了对策,并展望了其在水处理中的应用前景。  相似文献   

15.
以硝酸锌和硫酸亚铁为原料,采用水热法一步合成了ZnO/ZnFe_2O_4纳米颗粒,再通过水合肼还原氧化石墨烯合成了ZnO/ZnFe_2O_4/石墨烯磁性催化剂。采用X射线衍射(XRD),场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM),傅立叶变换红外光谱仪(FT-IR)等仪器对催化剂的结构进行了表征。以亚甲基蓝作为目标降解物,考察了不同石墨烯掺量的磁性催化剂在可见光照射下的光催化性能。结果表明,当石墨烯掺量为3%时,磁性催化剂的活性最优,可见光照射60min后亚甲基蓝溶液的降解率高达98%。磁性催化剂稳定性良好,且由于ZnFe_2O_4的存在,磁性催化剂可通过外部磁场进行回收。  相似文献   

16.
In this paper, we reported the preparation of ZnO/ZnS core/shell nanocomposites by sulfidation of ZnO nanostructures via a simple hydrothermal method. The precursors of bare ZnO nanoparticles and ZnO nanorods were synthesized by a surfactant-assisted hydrothermal growth. The structural, morphological, and element compositional analysis of bare ZnO nanostructures and ZnO/ZnS core/shell nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy techniques. The XRD results indicated that the phase of bare ZnO nanoparticles and ZnO nanorods was wurtzite structure, and the phase of coated ZnS nanoparticles on the surface of bare ZnO nanostructures was sphalerite structure with the size of about 8 nm. Photoluminescence measurement was carried out, and the PL spectra of ZnO/ZnS core/shell nanocomposites revealed an enhanced UV emission and a passivated orange emission compared to that of bare ZnO nanostructures. In addition, the growth mechanism of ZnO/ZnS core/shell nanostructures through hydrothermal method was preliminarily discussed.  相似文献   

17.
Excellent luminescence properties of ZnO/ZnS nanocrystallites prepared using simple wet chemical approach at room temperature have been reported. ZnS coating on the surface of ZnO nanocrystallites enhanced the green emission (around 500 nm) by a factor of 2. The intensity of the blue emission around 450 nm of ZnO/ZnS nanocrystallites is observed to be as high as three times the emission intensity of pure ZnO nanocrystallites. A further overall increase by a factor of ∼2.5 has also been observed in the intensity of wide blue-green emission when the sample was prepared onto grating compared to that of the samples prepared onto uncoated as well as gold coated quartz. The enhanced emission is thought to be due to plasmon assisted electromagnetic field enhancement near nanocrystallites-metal interface. This is supported by power dependent photoluminescence measurements. The strong enhanced blue-green emission covering a wide spectral range of ∼375-650 nm signifies potential optoelectronic applications in near UV and VIS wavelength regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号