首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations at the phosphorylation site (Asp-378) of the yeast plasma-membrane H+-ATPase have been shown previously to cause misfolding of the ATPase, preventing normal movement along the secretory pathway; Asp-378 mutations also block the biogenesis of co-expressed wild-type ATPase and lead to a dominant lethal phenotype. To ask whether these defects are specific for Asp-378 or whether the phosphorylation region as a whole is involved, alanine-scanning mutagenesis has been carried out to examine the role of 11 conserved residues flanking Asp-378. In the sec6-4 expression system (Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991) J. Biol. Chem. 266, 7940-7949), the mutant ATPases displayed varying abilities to reach the secretory vesicles that deliver plasma-membrane proteins to the cell surface. Indirect immunofluorescence of intact cells also gave evidence for a spectrum of behavior, ranging from mutant ATPases completely arrested (D378A, K379A, T380A, and T384A) or partially arrested in the endoplasmic reticulum to those that reached the plasma membrane in normal amounts (C376A, S377A, and G381A). Although the extent of ER retention varied among the mutants, the endoplasmic reticulum appeared to be the only secretory compartment in which the mutant ATPases accumulated. All of the mutant proteins that localized either partially or fully to the ER were also malfolded based on their abnormal sensitivity to trypsin. Among them, the severely affected mutants had a dominant lethal phenotype, and even the intermediate mutants caused a visible slowing of growth when co-expressed with wild-type ATPase. The effects on growth could be traced to the trapping of the wild-type enzyme with the mutant enzyme in the ER, as visualized by double label immunofluorescence. Taken together, the results indicate that the residues surrounding Asp-378 are critically important for ATPase maturation and transport to the cell surface.  相似文献   

2.
Time-resolved infrared difference spectra of the ATP-induced phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase have been recorded in H2O and 2H2O at pH 7.0 and 1 degrees C. The reaction was induced by ATP release from P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate (caged ATP) and from [gamma-18O3]caged ATP. A band at 1546 cm-1, not observed with the deuterated enzyme, can be assigned to the amide II mode of the protein backbone and indicates that a conformational change associated with ATPase phosphorylation takes place after ATP binding. This is also indicated between 1700 and 1610 cm-1, where bandshifts of up to 10 cm-1 observed upon protein deuteration suggest that amide I modes of the protein backbone dominate the difference spectrum. From the band positions it is deduced that alpha-helical, beta-sheet, and probably beta-turn structures are affected in the phosphorylation reaction. Model spectra of acetyl phosphate, acetate, ATP, and ADP suggest the tentative assignment of some of the bands of the phosphorylation spectrum to the molecular groups of ATP and Asp351, which participate directly in the phosphate transfer reaction: a positive band at 1719 cm-1 to the C==O group of aspartyl phosphate, a negative band at 1239 cm-1 to the nuas(PO2-) modes of the bound ATP molecule, and a positive band at 1131 cm-1 to the nuas(PO32-) mode of the phosphoenzyme phosphate group, the latter assignment being supported by the band's sensitivity toward isotopic substitution in the gamma-phosphate of ATP. Band positions and shapes of these bands indicate that the alpha- and/or beta-phosphate(s) of the bound ATP molecule become partly dehydrated when ATP binds to the ATPase, that the phosphoenzyme phosphate group is unprotonated at pH 7.0, and that the C==O group of aspartyl phosphate does not interact with bulk water. The Ca2+ binding sites seem to be largely undisturbed by the phosphorylation reaction, and a functional role of the side chains of Asn, Gln, and Arg residues was not detected.  相似文献   

3.
Several functions of the 70-kilodalton heat shock cognate protein (Hsc70), such as peptide binding/release and clathrin uncoating, have been shown to require potassium ions. We have examined the effect of monovalent ions on the ATPase activity of Hsc70. The steady-state ATPase activities of Hsc70 and its amino-terminal 44-kDa ATPase fragment are minimal in the absence of K+ and reach a maximum at approximately 0.1 M [K+]. Activation of the ATPase turnover correlates with the ionic radii of monovalent ions; those that are at least 0.3 A smaller (Na+ and Li+) or larger (Cs+) than K+ show negligible activation, whereas ions with radii differing only approximately 0.1 A from that of K+ (NH4+ and Rb+) activate to approximately half the turnover rate observed with K+. Single turnover experiments with Hsc70 demonstrate that ATP hydrolysis is 5-fold slower with Na+ than with K+. The equilibrium binding of ADP or ATP to Hsc70 is unperturbed when K+ is replaced with Na+. These results are consistent with a role for monovalent ions as specific cofactors in the enzymatic hydrolysis of ATP.  相似文献   

4.
We have studied the change of the catalytic activity of chimeric complexes that were formed by chloroplast coupling factor 1 (CF1) -gamma, alpha and beta subunits of thermophilic bacterial F1 after formation or reduction of the disulfide bridge of different gamma subunits modified by oligonucleotide-directed mutagenesis techniques. For this purpose, three mutant gamma subunits were produced: gamma Delta194-230, here 37 amino acids from Pro-194 to Ile-230 are deleted, gammaC199A, Cys-199 is changed to Ala, and gamma Delta200-204, amino acids from Asp-200 to Lys-204 are deleted. All of the chimeric subunit complexes produced from each of these mutant CF1-gamma subunits and alpha and beta subunits from thermophilic bacterial F1 lost the sensitivity against thiol reagents when compared with the complex containing wild-type CF1-gamma. The pH optimum (pH 8.5-9.0) and the concentration of methanol to stimulate ATPase activities were not affected by these mutations. These indicate that the introduction of the mutations did not change the main features of ATPase activity of the chimeric complex. However, the interaction between gamma subunit and epsilon subunit was strongly influenced by the type of gamma subunit itself. Although the ATPase activity of the chimeric complex that contained gamma Delta200-204 or gammaC199A was inhibited by the addition of recombinant epsilon subunit from CF1 similarly to complexes containing the reduced wild-type gamma subunit, the recombinant epsilon subunit did not inhibit the ATPase of the complex, which contained the oxidized form of gamma subunit. Therefore the affinity of the epsilon subunit to the gamma subunit may be dependent on the state of the gamma subunit or the epsilon subunit may bind to the oxidized form of gamma subunit in a mode that does not inhibit the activity. The ATPase activity of the complex that contains gamma Delta194-230 was not efficiently inhibited by epsilon subunit. These results show that the formation or reduction of the disulfide bond on the gamma subunit may induce a conformational change in the region that directly affects the interaction of this subunit with the adjacent epsilon subunit.  相似文献   

5.
We have separately expressed the Dictyosteliumdiscoideum myosin II nonhydrolyzer point mutations E459V and E476K [Ruppel, K. M., and Spudich, J. A. (1996) Mol. Biol. Cell 7, 1123-1136] in the soluble myosin head fragment M761-1R [Anson et al. (1996) EMBO J. 15, 6069-6074] and performed transient kinetic analyses to characterize the ATPase cycles of the mutant proteins. While the mutations cause some changes in mantATP [2'(3')-O-(N-methylanthraniloyl)-ATP] and mantADP binding, the most dramatic effect is on the hydrolysis step of the ATPase cycle, which is reduced by 4 (E476K) and 6 (E459V) orders of magnitude. Thus, both mutant myosin constructs do in fact catalyze ATP hydrolysis but have very long-lived myosin.ATP states. The E459V mutation allowed for a direct measurement of the ATP off rate constant from myosin, which was found to be 2 x 10(-)5 s-1. Actin accelerated ATP release from this E459V construct by at least 100-fold. Additionally, we found that the affinity of the E476K construct for actin is significantly weaker than for the wild-type construct, while the E459V mutant interacts with actin normally. Their functional properties and the fact that they can be produced and purified in large amounts make the E476K and E459V constructs ideal tools to elucidate key structural features of the myosin ATPase cycle. These constructs should allow us to address important questions, including how binding of ATP to myosin heads results in a >3 order of magnitude reduction in actin affinity.  相似文献   

6.
ArsA protein, the catalytic component of the plasmid-encoded anion-translocating ATPase in Escherichia coli, contains two consensus nucleotide binding domains, A1 and A2, that are connected by a flexible linker. ATP has previously been shown to cross-link to the A1 domain upon activation with UV light but not to the A2 domain. The ATP analogue, 5'-p-fluorosulfonylbenzoyladenosine (FSBA) was used to probe the nucleotide binding domains of ArsA. The covalently labeled protein was subjected to partial trypsin proteolysis, followed by Western blot analysis of the fragments with the anti-FSBA serum. The N-terminal amino acid sequence of the labeled fragment showed that FSBA binds preferentially to the C-terminal domain A2 both in the absence and the presence of antimonite. Occupancy of the two nucleotide binding sites was determined by protection from trypsin proteolysis. Trypsin cleaved the ArsA protein at Arg290 in the linker to generate a 32-kDa N-terminal and a 27-kDa C-terminal fragment. The 32-kDa fragment is compact and largely inaccessible to trypsin; however, the 27-kDa was cleaved further. Incubation with FSBA, which binds to the C-terminal domain, resulted in significant protection of the 27-kDa fragment. This fragment was not protected upon incubation with ATP alone, indicating that A2 might be unoccupied. However, upon incubation with ATP and antimonite, almost complete protection from trypsin was seen. ATP and FSBA together mimicked the effect of ATP and antimonite, implying that this fully protected conformation might be the result of both sites occupied with the nucleotide. It is proposed that the A1 site in ArsA is a high affinity ATP site, whereas the allosteric ligand antimonite is required to allow ATP binding to A2, resulting in catalytic cooperativity. Thus antimonite binding may act as a switch in regulating ATP binding to A2 and hence the ATPase activity of ArsA.  相似文献   

7.
Soluble mitochondrial F1 and F1 in complex with the natural ATPase inhibitor protein (F1-IP) catalyze the spontaneous synthesis of [gamma-32P]ATP from medium [32P]phosphate and enzyme-bound ADP when incubated in media with dimethylsulfoxide (Me2SO); under these conditions, the synthesized [gamma-32P]ATP is not released into the media, it remains tightly bound to the enzymes [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. Some of the characteristics of the synthesized [gamma-32P]ATP were studied in F1 and F1-IP (ATPase activities of 70 and 1-3 micromol x min(-1) x mg(-1), respectively). In Me2SO media, gamma-phosphate of synthesized ATP in F1 or F1-IP exchanges with medium phosphate. From the rates of the exchange reaction, the half-times for hydrolysis of the synthesized ATP in F1 and F1-IP were calculated: 45 min and 58 min for F1 and F1-IP, respectively. The course that synthesized [gamma-32P]ATP follows after dilution of the Me2SO synthetic mixture with aqueous buffer was determined. After dilution, the half-life of synthesized ATP in F1 was less than 1 min. In F1-IP, ATP was also hydrolyzed, but at significantly lower rates. In F1-IP, dilution also produced release of the synthesized [gamma-32P]ATP. This was assayed by the accessibility of [gamma-32P]ATP to hexokinase. About 25% of [gamma-32P]ATP synthesized in F1-IP, but not in F1, was released into the media after dilution with aqueous buffer that contained 20 mM phosphate. Release of tightly bound ATP required the binding energy of phosphate and solvation of F1-IP, however, the particular kinetics of F1-IP were also central for medium ATP synthesis in the absence of electrochemical H+ gradients.  相似文献   

8.
The plasma-membrane H+-ATPase of Saccharomyces cerevisiae, which belongs to the P2 subgroup of cation-transporting ATPases, is encoded by the PMA1 gene and functions physiologically to pump protons out of the cell. This study has focused on hydrophobic transmembrane segments M5 and M6 of the H+-ATPase. In particular, a conserved aspartate residue near the middle of M6 has been found to play a critical role in the structure and biogenesis of the ATPase. Site-directed mutants in which Asp-730 was replaced by an uncharged residue (Asn or Val) were abnormally sensitive to trypsin, consistent with the idea that the proteins were poorly folded, and immunofluorescence confocal microscopy showed them to be arrested in the endoplasmic reticulum. Similar defects are known to occur when either Arg-695 or His-701 in M5 is replaced by a neutral residue (Dutra, M. B., Ambesi, A., and Slayman, C. W. (1998) J. Biol. Chem. 273, 17411-17417). To search for possible charge-charge interactions between Asp-730 and Arg-695 or His-701, double mutants were constructed in which positively and negatively charged residues were swapped or eliminated. Strikingly, two of the double mutants (R695D/D730R and R695A/D730A) regained the capacity for normal biogenesis and displayed near-normal rates of ATP hydrolysis and ATP-dependent H+ pumping. These results demonstrate that neither Arg-695 nor Asp-730 is required for enzymatic activity or proton transport, but suggest that there is a salt bridge between the two residues, linking M5 and M6 of the 100-kDa polypeptide.  相似文献   

9.
The poly(A) tail of a mammalian mRNA is generated by endonucleolytic cleavage and poly(A) addition. Previous studies conducted with nuclear extracts suggested an ATP requirement for the cleavage step. We have reexamined the cofactor requirement, initially with the SV40 late pre-mRNA, which requires for cleavage four protein factors, cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Using highly purified preparations of these factors, which lacked detectable creatine phosphokinase and ATPase activities, creatine phosphate (CP) was, surprisingly, found to be sufficient to promote efficient cleavage. Although other phosphate compounds substituted poorly or not at all for CP, another phosphoguanidine, arginine phosphate, was fully functional. Notably, ATP was neither necessary nor sufficient, and could in fact inhibit the reaction. Treatment of the purified factors with hexokinase plus glucose (to deplete any contaminating ATP) was without effect, as was addition of EDTA. Using 32P-labeled CP, we found that neither hydrolysis of CP nor phosphate transfer from CP occurred during the cleavage reaction. CP also allowed cleavage of the adenovirus 2 L3 pre-mRNA. However, in this case, ATP both enhanced the reaction and influenced the precise site of cleavage, perhaps reflecting the requirement of poly(A) polymerase for cleavage of this RNA. These results indicate that ATP is not essential for 3' pre-mRNA cleavage and that CP or a related compound can function as a necessary cofactor.  相似文献   

10.
There is strong evidence that Asp-378 of the yeast PMA1 ATPase plays an essential role in ATP hydrolysis by forming a covalent beta-aspartyl phosphate reaction intermediate. In this study, Asp-378 was replaced by Asn, Ser, and Glu, and the mutant ATPases were expressed in a temperature-sensitive secretion-deficient strain (sec6-4) that allowed their properties to be examined. Although all three mutant proteins were produced at nearly normal levels and remained stable for at least 2 h at 37 degrees C, they failed to travel to the vesicles that serve as immediate precursors of the plasma membrane; instead, they became arrested at an earlier step of the secretory pathway. A closer look at the mutant proteins revealed that they were firmly inserted into the bilayer and were not released by washing with high salt, urea, or sodium carbonate (pH 11), treatments commonly used to strip nonintegral proteins from membranes. However, all three mutant ATPases were extremely sensitive to digestion by trypsin, pointing to a marked abnormality in protein folding. Furthermore, in contrast to the wild-type enzyme, the mutant ATPases could not be protected against trypsinolysis by ligands such as MgATP, MgADP, or inorganic orthovanadate. Thus, Asp-378 functions in an unexpectedly complex way during the acquisition of a mature structure by the yeast PMA1 ATPase.  相似文献   

11.
The bacterium Legionella pneumophila is the responsible agent for Legionnaires' disease and has recently been shown to harbor a gene encoding a kinase that confers resistance to the aminoglycoside antibiotic spectinomycin (Suter, T. M., Viswanathan, V. K., and Cianciotto, N. P. (1997) Antimicrob. Agents Chemother. 41, 1385-1388). We report the overproduction, purification, and characterization of this spectinomycin kinase from an expressing system in Escherichia coli. The purified protein shows stringent substrate specificity for spectinomycin with Km = 21.5 microM and kcat = 24.2 s-1 and does not bind other aminoglycosides including kanamycin, amikacin, neomycin, butirosin, streptomycin, or apramycin. Purification of spectinomycin phosphate followed by characterization by mass spectrometry and 1H, 13C, and 31P NMR established the site of phosphorylation to be at the hydroxyl group at position 9. Thus this enzyme is designated APH(9)-Ia (where APH is aminoglycoside kinase). The enzyme was inactivated by the electrophilic ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine, consistent with a nucleophilic residue such as Lys lining the nucleotide binding pocket. Site-directed mutagenesis of Lys-52 and Asp-212 to Ala confirmed that these residues were important for catalysis, with Lys-52 playing a potential role in ATP binding and Asp-212 in phosphoryl transfer. Thio and solvent isotope effect experiments in the presence of either Mg2+ or Mn2+ were consistent with a kinetic mechanism in which phosphate transfer does not contribute significantly to the rate-limiting step. These results establish that APH(9)-Ia is a highly specific antibiotic resistance kinase and provides the requisite mechanistic information for future structural studies.  相似文献   

12.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

13.
Superposition of the PI-SceI and I-CreI homing endonuclease three-dimensional x-ray structures indicates general similarity between the I-CreI homodimer and the PI-SceI endonuclease domain. Saddle-shaped structures are present in each protein that are proposed to bind DNA. At the putative endonucleolytic active sites, the superposition reveals that two lysine (Lys-301 and Lys-403 in PI-SceI and Lys-98 and Lys-98' in I-CreI) and two aspartic acid residues (Asp-218 and Asp-326 in PI-SceI and Asp-20 and Asp-20' in I-CreI) are related by 2-fold symmetry. The critical role of Lys-301, Asp-218, and Asp-326 in the PI-SceI reaction pathway was reported previously. Here, we demonstrate the significance of the active-site symmetry by showing that alanine substitution at Lys-403 reduces cleavage activity by greater than 50-fold but has little effect on the DNA binding activity of the mutant enzyme. Substitution of Lys-403 with arginine, which maintains the positive charge, has only a modest effect on activity. Interestingly, even though the Lys-301 and Lys-403 residues display pseudosymmetry, PI-SceI mutant proteins with substitutions at these positions have different behaviors. The presence of similar basic and acidic residues in many LAGLIDADG homing endonucleases suggests that these enzymes use a common reaction mechanism to cleave double-stranded DNA.  相似文献   

14.
Conditions have been reported under which the F1 moiety of bovine heart ATP synthase catalyzes the hydrolysis of ATP by an apparently cooperative mechanism in which the slow rate of hydrolysis at a single catalytic site (unisite catalysis) is enhanced more than 10(6)-fold when ATP is added in excess to occupy one or both of the other two catalytic sites (multisite catalysis) (Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12101-12105). In the novel studies reported here, and in contrast to the earlier report, we have (a) monitored the kinetics of ATP hydrolysis of F1 by using nucleotide-depleted preparations and a highly sensitive chemiluminescent assay; (b) followed the reaction immediately upon addition of F1 to ATP, rather than after prior incubation with ATP; and (c) used a reaction medium with Pi as the only buffer. The following observations were noted. First, regardless of the source of enzyme, bovine or rat, and catalytic conditions (unisite or multisite), the rates of hydrolysis depend on ATP concentration to the first power. Second, the first order rate constant for ATP hydrolysis remains relatively constant under both unisite and multisite conditions declining only slightly at high ATP concentration. Third, the initial rates of ATP hydrolysis exhibit Michaelis-Menten kinetic behavior with a single Vmax exceeding 100 micromol of ATP hydrolyzed per min/mg of F1 (turnover number = 635 s-1) and a single Km for ATP of about 57 microM. Finally, the reaction is inhibited markedly by low concentrations of ADP. It is concluded that, under the conditions described here, all catalytic sites that participate in the hydrolysis of ATP within the F1 moiety of mitochondrial ATP synthase function in a kinetically equivalent manner.  相似文献   

15.
Two anionic residues in the nicotinic acetylcholine receptor, Asp-152 in the alpha-subunit and Asp-174 in the gamma-subunit or the corresponding Asp-180 in the delta-subunit, are presumed to reside near the two agonist binding sites at the alphagamma and alphadelta subunit interfaces of the receptor and have been implicated in electrostatic attraction of cationic ligands. Through site-directed mutagenesis and analysis of state changes in the receptor elicited by agonists, we have distinguished the roles of anionic residues in conferring ligand specificity and ligand-induced state changes. alphaAsp-152 affects agonist and antagonist affinity similarly, whereas gammaAsp-174 and deltaAsp-180 primarily affect agonist affinity. Combining charge neutralization on the alpha subunit with that on the gamma and delta subunits shows an additivity in free energy changes for carbamylcholine and d-tubocurarine, suggesting independent contributions of these residues to stabilizing the bound ligands. Since both aromatic and anionic residues stabilize cationic ligands, we substituted tyrosines (Y) for the aspartyl residues. While the substitution, alphaD152Y, reduced the affinities for agonists and antagonists, the gammaD174Y/deltaD180Y mutations reduced the affinity for agonist binding, but surprisingly enhanced the affinity for d-tubocurarine. To ascertain whether selective changes in agonist binding stem from the capacity of agonists to form the desensitized state of the receptor, carbamylcholine binding was measured in the presence of an allosteric inhibitor, proadifen. Mutant nAChRs carrying alphaD152Q or gammaD174N/deltaD180N show similar reductions in dissociation constants for the desensitized compared with activable receptor state and a similar proadifen concentration dependence. Hence, these mutations influence ligand recognition rather than the capacity of the receptor to desensitize. By contrast, the alphaD200Q mutation diminishes the ratio of dissociation constants for two states and requires higher proadifen concentrations to induce desensitization. Thus, the contributions of alphaAsp-152, gamma/deltaAsp-174/180, and alphaAsp-200 in stabilizing ligand binding can be distinguished by the interactions between agonists and allosteric inhibitors.  相似文献   

16.
We have assessed the ability of the epsilon-amino group of a non-native lysine chain to substitute for a monovalent cation in an enzyme active site. In the bovine Hsc70 ATPase fragment, mutation of cysteine 17 or aspartic acid 206 to lysine potentially allows the replacement of an active site potassium ion with the epsilon-amino nitrogen. We examined the ATP hydrolysis kinetics and crystal structures of isolated mutant ATPase domains. The introduced epsilon-amino nitrogen in the C17K mutant occupies a significantly different position than the potassium ion. The introduced epsilon-amino nitrogen in the D206K mutant occupies a position indistinguishable from that of the potassium in the wild-type structure. Each mutant retains <5% ATPase activity when compared to the wild type under physiological conditions (potassium buffer) although substrate binding is tighter, probably as a consequence of slower release. It is possible to construct a very good structural mimic of bound cation which suffices for substrate binding but not for catalytic activity.  相似文献   

17.
ATP hydrolysis by MutS homologs is required for function of these proteins in mismatch repair. However, the function of ATP hydrolysis in the repair reaction is controversial. In this paper we describe a steady-state kinetic analysis of the DNA-activated ATPase of human MutSalpha. Comparison of salt concentration effects on mismatch repair and mismatch-provoked excision in HeLa nuclear extracts with salt effects on the DNA-activated ATPase suggests that ATP hydrolysis by MutSalpha is involved in the rate determining step in the repair pathway. While the ATPase is activated by homoduplex and heteroduplex DNA, the half-maximal concentration for activation by heteroduplex DNA is significantly lower under physiological salt concentrations. Furthermore, at optimal salt concentration, heteroduplex DNA increases the kcat for ATP hydrolysis to a greater extent than does homoduplex DNA. We also demonstrate that the degree of ATPase activation is dependent on DNA chain length, with the kcat for hydrolysis increasing significantly with chain length of the DNA cofactor. These results are discussed in terms of the translocation (Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P., and Griffith, J. D. (1997) EMBO J. 16, 4467-4476) and the molecular switch (Gradia, S., Acharya, S., and Fishel, R. (1997) Cell 91, 995-1005) models that invoke distinct roles for ATP hydrolysis in MutS homolog function.  相似文献   

18.
Microbial carbamoyl phosphate synthetases (CPS) use glutamine as nitrogen donor and are composed of two subunits (or domains), one exhibiting glutaminase activity, the other able to synthesize carbamoyl phosphate (CP) from bicarbonate, ATP, and ammonia. The pseudodimeric organization of this synthetase suggested that it has evolved by duplication of a smaller kinase, possibly a carbamate kinase (CK). In contrast to other prokaryotes the hyperthermophilic archaeon Pyrococcus furiosus was found to synthesize CP by using ammonia and not glutamine. We have purified the cognate enzyme and found it to be a dimer of two identical subunits of Mr 32,000. Its thermostability is considerable, 50% activity being retained after 1 h at 100 degrees C or 3 h at 95 degrees C. The corresponding gene was cloned by PCR and found to present about 50% amino acid identity with known CKs. The stoichiometry of the reaction (two ATP consumed per CP synthesized) and the ability of the enzyme to catalyze at high rate a bicarbonate-dependent ATPase reaction however clearly distinguish P. furiosus CPS from ordinary CKs. Thus the CPS of P. furiosus could represent a primeval step in the evolution of CPS from CK. Our results suggest that the first event in this evolution was the emergence of a primeval synthetase composed of subunits able to synthesize both carboxyphosphate and CP; this step would have preceded the duplication assumed to have generated the two subdomains of modern CPSs. The gene coding for this CK-like CPS was called cpkA.  相似文献   

19.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.  相似文献   

20.
Aspartate residues are involved in coordination of the nucleotide-metal of several nucleotide triphosphatases. To examine interactions between Rubisco activase and ATP, site-directed mutations were made at two species-invariant aspartate residues, D174 and D231. In the absence of the magnesium cofactor, the mutant proteins D231R, D174Q, and D174A, but not D174E, bound ATP with higher affinity than did wild-type. In the presence of Mg2+, the affinity for ATP of D231R was further increased, but was reduced with mutations at D174. Although all mutants bound ATP, only D174E aggregated in response to ATP/Mg2+ and retained partial ATPase and Rubisco activation activities. In mixing experiments, the catalytically competent D174E stimulated wild-type ATPase activity, whereas the mutants lacking ATPase activity were inhibitory to wild-type enzyme and prevented aggregation. These results are consistent with a mechanism for activase that involves ATP-binding, subunit aggregation and ATP hydrolysis as sequential steps in the catalytic mechanism. The results also indicated that precise coordination of the gamma-phosphate is required for aggregation and depends on D174 and D231. To account for the pronounced cooperativity of Rubisco activase subunits, we suggest that coordination of the ATP gamma-phosphate may involve participation of residues from adjacent subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号