首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
一类广义系统的迭代学习控制   总被引:4,自引:0,他引:4  
在对广义系统进行标准分解的基础上, 研究了含脉冲快子系统的迭代学习控制问题. 通过 Frobenius 范数给出了快子系统在 P 型学习律作用下收敛的充分性条件, 同时通过梯度法给出求解增益矩阵的方法. 其次, 讨论了单输入单输出不确定广义系统的迭代学习控制问题, 通过优化方法给出该系统在 P 型学习律作用下, 系统实际输出尽可能快地收敛到理想输出的增益矩阵的选择方法.  相似文献   

2.
针对一类线性广义系统,研究其P型迭代学习控制在离散频域中的收敛性态。在离散频域中,对广义系统进行奇异值分解后,利用傅里叶级数系数的性质和离散的Parseval能量等式,推演了一阶P型迭代学习控制律跟踪误差的离散能量频谱的递归关系和特性,获得了学习控制律收敛的充分条件;讨论了二阶P型迭代学习控制律的收敛条件。仿真实验验证了理论的正确性和学习律的有效性。  相似文献   

3.
提出线性离散时间系统基于Jacobi方法的迭代学习控制问题.通过构建线性迭代学习控制问题与线性方程组之间的联系,将Jacobi方法引入到迭代学习控制中,并由此构建得到迭代学习控制律.借助于矩阵运算,证明这种学习律能使得系统的输出跟踪误差经有限次迭代后为零.数值例子说明了算法的可适用性.  相似文献   

4.
带控制时滞广义系统的PID型迭代学习算法   总被引:1,自引:0,他引:1  
研究了一类线性时滞广义系统的迭代学习控制问题.针对广义系统的特点,引入选代学习控制方法,给出了线性时滞广义系统的PID型选代学习算法.结合矩阵广义逆理论,利用λ范数和Bellman引理,并从理论上给出了算法收敛性的完整证明.研究结果表明,只要充分利用广义系统的特点,寻找合适的收敛性分析方法,便可解决控制时滞广义系统的收敛性问题,对时滞广义系统速代学习控制问题的研究具有重要的理论意义与应用价值.  相似文献   

5.
时滞系统采样迭代学习控制   总被引:2,自引:1,他引:2  
针对一类具有状态时滞的连续系统提出一种采样迭代学习控制算法。给出并证明了算法指数收敛的充分条件,该条件可保证系统输出无论在采样点或非采样点上,都能以指数收敛速率收敛至期望输出的一个与采样周期有关的误差范围内。仿真结果表明了该算法的有效性。  相似文献   

6.
为了在线性时不变MIMO系统中得到迭代学习控制的最优学习律和便于工程实现的简化学习律,在频域上对其进行了相关研究。以系统的传递函数矩阵为基础,依据Parseval定理,将时域误差关联为频域误差,再利用Jordan标准形矩阵等矩阵性质,得到了学习律的通适收敛条件。通过分析该条件,得出了收敛速度最快的一次迭代就能完成的最优学习律。由于高阶导数不利于消除噪音,因此文中还讨论了导数的降阶,给出了简化学习律算法。仿真结果表明,最优学习律和简化学习律是有效的。  相似文献   

7.
对迭代学习控制研究内容进行综述,回顾1995年以来该领域内取得的研究与应用成果,展望今后的研究方向。  相似文献   

8.
一类线性离散切换系统的迭代学习控制   总被引:1,自引:0,他引:1  
考虑具有任意切换序列线性离散切换系统的迭代学习控制问题. 假设切换系统在有限时间区间内重复运行, P型ILC算法可实现该类系统在整个时间区间内的完全跟踪控制. 采用超向量方法给出了算法在迭代域内收敛的条件, 并在理论上分析了的收敛性. 仿真示例验证了理论的结果.  相似文献   

9.
迭代学习控制的研究与现状   总被引:1,自引:0,他引:1  
迭代学习控制适用于工业机器人、数控机床等具有重复运行特性的领域,在非线性、未知模型等系统的控制方面有着独到优势。本文论述了迭代学习控制的基本理论问题,系统介绍了理论研究现状及工程应用,并讨论了其存在的问题和发展趋势。  相似文献   

10.
受扰动2-D线性时变系统的迭代学习控制   总被引:1,自引:0,他引:1  
利用2-D系统理论的Roesser模型,给出了受扰动的线性时变离散系统迭代学习控制(ILC)问题的一种解决方法.对系统所受的已知扰动,给出其学习律参数的选取范围以及仅经一次迭代就能实现输出完全跟踪期望轨迹的参数选取方法;对系统所受的未知扰动,首先对SISO系统提出其学习律存在的条件及参数选取方法,进而推广到MIMO系统中,提出MIMO系统学习律的参数选取方法.最后给出两个数值例子进一步说明所得结果的有效性.  相似文献   

11.
Gu-Min Jeong 《Automatica》2002,38(2):287-291
This paper investigates iterative learning control for linear discrete time nonminimum phase systems. First, iterative learning control with advanced output data is considered for maximum phase systems. Next, the results are extended to nonminimum phase systems. The stability of the inverse mapping from the desired output to the input is proven based on the results for maximum phase systems. The input should be updated with the output which is more advanced than the input by the sum of the relative degree of the system and the number of nonminimum phase zeros. An example is given to indicate the importance of proper advances of output in the input update law.  相似文献   

12.
In this paper, the iterative learning control problem for a class of nonlinear singular impulsive systems is discussed. Then, a D-type (derivative-type) iterative learning control algorithm is presented such that the output tracks the desired output trajectory as accurate as possible. Furthermore, the sufficient condition for the convergence of the proposed algorithm is established in detail. Finally, a numerical example is included to corroborate the theoretical analyses.  相似文献   

13.
初态学习下的迭代学习控制   总被引:2,自引:1,他引:2  
孙明轩 《控制与决策》2007,22(8):848-852
提出一种新的初态学习律,以放宽常规迭代学习控制方法的初始定位条件.它允许一定的定位误差,在迭代中不需要定位在某一具体位置上,使得学习控制系统具有鲁棒收敛性.针对二阶LTI系统,给出了输入学习律及初态学习律的收敛性充分条件.依据收敛性条件,学习增益的选取需系统矩阵的估计值,但在一定建模误差下,仍能保证算法的收敛性.所提出的初态学习律本身及其收敛性条件均与输入矩阵无关.  相似文献   

14.
针对线性时变系统的轨迹跟踪控制问题,提出一种带参考批次的迭代学习控制算法,并给出了算法的收敛性分析.该迭代学习控制算法不需要事先了解线性时变对象的太多知识,而是将当前批次输入轨迹的较小变化所引起的输出轨迹作为参考批次,并以当前批次与参考批次的输入变化与对应的输出变化之比作为学习律,从而实现目标轨迹的跟踪.以一个典型的线性时变系统为例进行仿真分析,验证了所提出算法的有效性.  相似文献   

15.
The Smith predictor has been used to improve the closed-loop performance for systems with time delays. This paper proposes a frequency-domain method to design an iterative learning control to further improve the performance of Smith predictor controller. For a time-invariant plant with multiplicative perturbations and a Smith predictor controller, we derive a sufficient and necessary condition (which has the same form as that of a general robust performance design problem) for the iterative process to converge for all admissible plant uncertainties. In addition, the iterative learning controller under plant uncertainty is designed. An illustrative example demonstrating the main result is presented.  相似文献   

16.
In iterative learning control schemes for linear discrete time systems, conditions to guarantee the monotonic convergence of the tracking error norms are derived. By using the Markov parameters, it is shown in the time-domain that there exists a non-increasing function such that when the properly chosen constant learning gain is multiplied by this function, the convergence of the tracking error norms is monotonic, without resort to high-gain feedback.  相似文献   

17.
Iterative learning control for constrained linear systems   总被引:1,自引:0,他引:1  
This article considers iterative learning control (ILC) for linear systems with convex control input constraints. First, the constrained ILC problem is formulated in a novel successive projection framework. Then, based on this projection method, two algorithms are proposed to solve this constrained ILC problem. The results show that, when perfect tracking is possible, both algorithms can achieve perfect tracking. The two algorithms differ, however, in that one algorithm needs much less computation than the other. When perfect tracking is not possible, both algorithms can exhibit a form of practical convergence to a ‘best approximation’. The effect of weighting matrices on the performance of the algorithms is also discussed and finally, numerical simulations are given to demonstrate the effectiveness of the proposed methods.  相似文献   

18.
即时学习算法在非线性系统迭代学习控制中的应用   总被引:4,自引:1,他引:4       下载免费PDF全文
孙维  王伟  朱瑞军 《控制与决策》2003,18(3):263-266
运用即时学习算法来解决一类非线性系统的迭代学习控制初值问题。对于任何类型的迭代学习控制算法,即时学习算法都能有效地估计初始控制量,减小了初始输出误差,加快了算法的收敛速度,使得经过有限次迭代后系统输出能严格跟踪理想信号。对机器人系统的仿真结果表明了该方法的有效性。  相似文献   

19.
This paper investigates iterative learning control of nonlinear discrete time non-minimum phase systems in tracking problems. The main objective of this paper is to find an input-to-output mapping in order to stabilize the non-minimum phase systems and to obtain an input update law for handling uncertain systems. In conventional approaches on the tracking of non-minimum phase systems, zero dynamics is stabilized from the system equations and the input is calculated from the state information. For the learning of uncertain systems, conventional approaches depend on the output-to-state and state-to-input mappings. In the proposed method, the inverse system is stabilized using the input-to-output mapping for nonlinear non-minimum phase systems. A new input update law is proposed based on the relative degree and the number of non-minimum phase zeros. This makes the overall proposed learning system have a simple structure as in the classical ILC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号