首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diffusion couple of 3 mol% Y2O3–ZrO2 and titanium was isothermally annealed in argon at temperatures between 1100° and 1550°C. The phases and microstructure in the ceramic side were investigated using scanning electron microscopy and transmission electron microscopy, both attached to an energy-dispersive spectrometer. After annealing at 1100°C/6 h, zirconia grains did not grow conspicuously and evolved only traces of oxygen, resulting in t -ZrO2− x but not α-Zr. At temperatures above 1300°C, a significant amount of oxygen evolved from zirconia, reducing the O/Zr ratio, such that α-Zr was excluded from t -ZrO2− x during cooling, yielding a higher O/Zr ratio (≈2). When held at 1550°C/6 h, zirconia grains grew rapidly. The α-Zr was segregated on grain boundaries during cooling by the exsolution of zirconium from ZrO2− x , while twinned t '-ZrO2− x or lenticular t -ZrO2− x , which was embedded in ordered c- ZrO2− x , was found. The ordered c -ZrO2− x was identified by the     {113} superlattice reflections of its electron diffraction patterns.  相似文献   

2.
3.
A thermo gravimetric study of the oxidation behavior of chemically vapor-deposited amorphous and crystalline Si3N4 (CVD Si3N4) was made in dry oxygen (0.1 MPa) at 1550° to 1650°C. The specimens were prepared under various deposition conditions using a mixture of SiCl4, NH3, and H2 gases. The crystalline CVD Si3N4 indicated a parabolic oxidation kinetics over the whole temperature range, whereas the amorphous CVD Si3N4 changed from a parabolic to a linear law with increased temperature. The oxidation mechanism is discussed in terms of the activation energy for the oxidation and the microstructure of the formed oxide films.  相似文献   

4.
Zirconia–titanium (ZrO2–Ti) composites have been considered potential thermal barrier graded materials for applications in the aerospace industry. Powder mixtures of Ti and 3 mol% Y2O3 partially stabilized ZrO2 in various ratios were sintered at 1500°C for 1 h in argon. The microstructures of the as-sintered composites were characterized by X-ray diffraction and transmission electron microscopy/energy-dispersive spectroscopy. Ti reacted with and was mutually soluble in ZrO2, resulting in the formation of α-Ti(O, Zr), Ti2ZrO, and/or TiO. These oxygen-containing phases extracted oxygen ions from ZrO2, whereby oxygen-deficient ZrO2 was generated. For relatively small Ti/ZrO2 ratios, specimens with ≤30 mol% Ti, TiO were formed as oxygen could be sufficiently supplied by excess ZrO2. For the specimens with ≥50 mol% Ti, lamellar Ti2ZrO was precipitated in α-Ti(Zr, O), with no TiO being found. Both m -ZrO2− x and t -ZrO2− x were found in specimens with ≤50 mol% Ti; however, only c -ZrO2− x was formed in the specimen with 70 mol% Ti. As ZrO2 was gradually dissolved into Ti, yttria was retained in ZrO2 because of the very limited solubility of yttria in α-Ti(O, Zr) or TiO. The concentration of retained yttria and the degree of oxygen deficiency in ZrO2 increased with the Ti content. The complete dissolution of ZrO2 into Ti was followed by the precipitation of Y2Ti2O7 in the specimen with 90 mol% Ti.  相似文献   

5.
The mechanism of the reaction of UO2 with carbon in the presence of N2 at 1700°C and the rate of formation of the carbonitride product were determined. Uranium carbonitride forms at specific O2 and N2 chemical potentials by reactions such as (1) UO2( s ) + 0.67HCN( g )→UO1.33N0.45( s ) + 0.67CO( g ) + 0.11N2( g ) + 0.335H2( g ) and (2) UO1.33N0.45( s ) + 1.58HCN( g )→UO0.25N0.75( s ) + 1.33CO( g ) + 0.79H2( g ) + 0.64N2( g ). At P H2=2×10-5 atm, HCN formed, permitting a gas-phase transport of reactions not observed in the UO2-C reaction. Reaction (1) is completed in 0.01 to 0.1 of the time for complete conversion to carbonitride; reaction (2), which proceeds as soon as oxynitride is available, is controlled by solid-state diffusion across the carbonitride layers after they become continuous on the entire specimen. The reaction rates and product compositions depend on the P N2 and PCO in the system.  相似文献   

6.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

7.
Phase relations and lattice constants in the MgO–Al2O3–Ga2O3 system at 1550°C have been determined experimentally. In a large part of this system, only a nonstoichiometric spinel is stable. Compositions as extreme as 12.5 mol% MgO–20.5 mol% Ga2O3–67 mol% Al2O3 for a homogeneous spinel are possible. In the bordering phase diagrams of MgO–Al2O3 and MgO–Ga2O3, the composition of the spinel is as high as 63 mol% Al2O3 or Ga2O3, respectively. The contributions of all simple ionic exchange reactions on the lattice constant of the spinel have been deduced from X-ray diffractometry data.  相似文献   

8.
In this work, we report on the interdiffusion of Ge and Si in Ti3SiC2 and Ti3GeC2, as well as that of Nb and Ti in Ti2AlC and Nb2AlC. The interdiffusion coefficient, D int, measured by analyzing the diffusion profiles of Si and Ge obtained when Ti3SiC2–Ti3GeC2 diffusion couples are annealed in the 1473–1773 K temperature range at the Matano interface composition (≈Ti3Ge0.5Si0.5C2), was found to be given by
D int increased with increasing Ge composition. At the highest temperatures, diffusion was halted after a short time, apparently by the formation of a diffusion barrier of TiC. Similarly, the interdiffusion of Ti and Nb in Ti2AlC–Nb2AlC couples was measured in the 1723–1873 K temperature range. The D int for the Matano interface composition, viz. ≈(Ti0.5,Nb0.5)2AlC, was found to be given by
At 1773 K, the diffusivity of the transition metal atoms was ≈7 times smaller than those of the Si and Ge atoms, suggesting that the former are better bound in the structure than the latter.  相似文献   

9.
Solubilities of MgO in aqueous HC1 solutions at 23°±3°C were measured and combined with analyses of neat magnesium oxychloride cements, cured in sealed containers, to construct an equilibrium phase diagram for the system MgO-MgCl2-H2O. Specific gravities and acidities of solutions saturated with MgO and relative humidities of vapor phases over sealed samples were measured and combined with XRD data to define the compositions in equilibrium with two crystalline phases. Studies of relative reaction rates indicated that the 5–1–8 phase crystallizes more rapidly than the 3·1·8 phase and that cements near the 3·1·8 composition react rapidly with atmospheric CO2 to form the chlorocarbonate phase.  相似文献   

10.
11.
The kinetics of the reaction of UC2 spheres with nitrogen was studied from 1500° to 1700°C. A metallographic method was used to determine the time-dependent conversion of UC2 to U(C,N) and free C. The conversion appeared to be controlled by the diffusion of solid carbon in solution to sites where it could precipitate as free carbon. These sites were the surface of the sphere and particles of free carbon that existed within the original UC2. An increased distribution of these internal sites decreased the distance for carbon diffusion and resulted in an increased rate of reaction. The UC2 appeared to undergo a very rapid initial reaction that resulted in the uptake of 1 to 5 at.% nitrogen in the UC2 at these temperatures.  相似文献   

12.
13.
Phase relations in the quasi-ternary system MgO-V2O3-VO2 at 1200°C were studied using the quenching technique under controlled O2 atmospheres. A new phase of a type z VO y Mg2− x V1+ x O4 (0< x <1, y ≥1.5, z >0) was found with a compositional region along the MgV2O4-Mg2VO4 join. Equilibrium P O 2 observed for Mg2− x V1+ x O4 is quite different from that for V n O2 n -1 with an equal ratio of V3+/V4+, corresponding to the V3+ stabilities in two types of compounds. Thus, the phase relations in the ternary system were constructed on a conventional triaxial diagram as a function of P O2.  相似文献   

14.
We report the compatibility relationships between compounds, including the newly discovered superconducting Y1Ba2Cu3Ox phase, in the Y2O3-BaO-CuO system at 950°C. In addition to the previously reported ternary compounds, there is a new compound with a composition YlBa3Cu2Ox. The new compound is a perovskite 'space group P4mm) with lattice parameters a =4.078 Å (0.4078 nm) and c =4.01 Å (0.401 nm). There are also at least two structurally distinguishable binary phases between barium oxide and the known BaCuO2, but they appear to be hygroscopic and are beyond our current capabilities of analysis.  相似文献   

15.
Phase equilibria in the system CaO-MgO-B2O3 were investigated at 900°C using X-ray powder diffraction techniques. With the exception of MgO-B2O3, the binary phases reported previously were confirmed, but no ternary phases were found. Solid solution effects were investigated for the binary phases by comparison of patterns, whereas for CaO and MgO, accurate lattice parameters were compared. No solid solutions were detected. As a result, the isothermal equilibrium diagram at 900°C reduces to three phase triangles. X-ray powder diffraction data for the calcium berates are included.  相似文献   

16.
Activity–composition relations of FeCr2O4–FeAl2O4 and MnCr2O4–MnAl2O4 solid solutions were derived from activity–composition relations of Cr2O3–Al2O3 solid solutions and directions of conjugation lines between coexisting spinel and sesquioxide phases in the systems FeO–Cr2O3–Al2O3 and MnO–Cr2O3–Al2O3. Moderate positive deviations from ideality were observed.  相似文献   

17.
This paper describes a novel way to prepare the ternary phase Ti3SiC2 in a single-step procedure that we call electron-beam-ignited solid-state reaction (EBI-SSR). The preparation route is discussed by means of an isothermal section of the Ti-Si-C phase diagram. Properties such as the Vickers hardness and the electrical resistivity of the resulting samples are presented. Our property data compare well to those that have been published. The main advantages of this preparation method are the controllability of process parameters such as heating rates, temperatures, and times, as well as the short duration of the overall sample preparation. However, a disadvantage is the presence of second phases (typically in amounts of <8%) that must be reduced via further optimization of the process.  相似文献   

18.
Titanium silicon carbide (Ti3SiC2) and Ti3SiC2-based composite powders were synthesized by isothermal treatment in an inert atmosphere as a function of initial compositions (mixtures). A high content of TiC was obtained in the final product when the initial mixtures contained free carbon. The use of TiC as a reagent was unsuccessful in obtaining Ti3SiC2. High Ti3SiC2 conversion was found for the initial mixtures containing SiC as the main source for silicon and carbon. An initial mixture with a large excess of silicon, 3Ti/1.5SiC/0.5C, was needed to obtain high-purity Ti3SiC2. A reaction mechanism, where Ti3SiC2 nucleates on Ti5Si3C crystals and grows by long-range diffusion of Ti and C, is proposed. The reaction mechanism was proposed to be based on silicon loss during the formation of Ti3SiC2.  相似文献   

19.
Subsolidus phase relations in the system Na2O-Bi2O3-TiO2 at 1000°C were investigated by solid-state reaction techniques and X-ray diffraction methods. Five ternary compounds were observed in the system: Na0.5Bi4.5Ti4O15; Na0.5Bi0.5TiO3; a cubic pyrochlore solid solution composed of xNa2O.25Bi2O3.(75−;x) TiO2 where x is 2.5 to 3.75; a new compound Na0.5Bi8.5Ti7O27 indexed with the orthorhombic cell of a = 5.45, b = 5.42, and c = 36.8 Å; and an unidentified phase with the probable composition NaBiTi6O14.  相似文献   

20.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号