首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid in the diet is known to enhance milk fat secretion and alter milk fatty acid composition in lactating goats. In the current experiment, the contribution of peripheral tissue and mammary gland lipid metabolism to changes in milk fat composition from plant oils was examined. Fourteen Alpine goats in midlactation were used in a 3 × 3 Latin square design with 28-d experimental periods. Treatments comprised maize silage–based diets containing no additional oil (M), sunflower-seed oil (MSO; 6.1% of diet DM), or linseed oil (MLO; 6.2% of diet DM). Compared with the control, milk yield was greater in goats fed MSO (3.37 and 3.62 kg/d, respectively), whereas MLO enhanced milk fat content (+3.9 g/kg), resulting in a 14% increase in milk fat secretion. Both MSO and MLO increased milk lactose secretion by 12 and 8%, respectively, compared with M. Relative to the control, plant oils decreased C10 to C16 secretion (32 and 24%, respectively, for MSO and MLO) and enhanced C18 output in milk (ca. 110%). Diets MSO and MLO increased cis-9 18:1 secretion in milk by 25 and 31%, respectively, compared with M. The outputs of trans-11 18:1 and cis-9, trans-11 18:2 in milk were increased 8.34- and 6.02-fold for MSO and 5.58- and 3.71-fold for MLO compared with M, and MSO increased trans-10 18:1 and trans-10, cis-12 18:2 secretion. Plant oils decreased milk fat cis-9 14:1/14:0; cis-9 16:1/16:0; cis-9 18:1/18:0; and cis-9, trans-11 18:2/trans-11 18:1 concentration ratios but had no effect on mammary stearoyl-CoA desaturase mRNA or activity. Furthermore, changes in milk fatty acid secretion were not associated with alterations in mammary acetyl-CoA carboxylase mRNA and activity, abundance of mRNA encoding for lipoprotein lipase and fatty acid synthase, or malic enzyme and glycerol-3-phosphate dehydrogenase activity in mammary tissue. Mammary lipoprotein lipase activity was increased with MSO relative to MLO. Treatments had no effect on glucose-6-phosphate dehydrogenase, malic enzyme, glycerol-3-phosphate dehydrogenase activity, or mRNA abundance and/or activity of lipoprotein lipase, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase in liver or adipose tissue. In conclusion, inclusion of sunflower-seed oil and linseed oil in maize silage–based diets alters milk fatty acid secretion in goats via mechanisms independent of changes in mammary, hepatic, or adipose tissue lipogenic gene expression. Furthermore, data provided indications that the regulation of mammary lipogenic responses to plant oils on starch-rich diets differs between the caprine and bovine.  相似文献   

2.
Stearoyl-CoA desaturase (SCD) is an important enzyme in the bovine mammary gland, and it introduces a double bond at the Δ9 location of primarily myristoyl-, palmitoyl-, and stearoyl-CoA. The main objective of this study was to compare the effects of various fatty acids (FA) typically present in dairy cow rations on the expression of SCD1 and SCD5 in the mammary gland of dairy cows. Twenty-eight Holstein-Friesian cows were randomly assigned to 1 of 4 dietary treatments. The dietary treatments were a basal diet supplemented (dry matter basis) with 2.7% rapeseed oil as a source of C18:1 cis-9; 2.7% soybean oil as a source of C18:2 cis-9,12; 2.7% linseed oil as a source of C18:3 cis-9,12,15; or 2.7% of a 1:1:1 mixture of the 3 oils. The oil supplements were included in the concentrate, which was fed together with corn silage and grass silage. In addition, cows were grazing on pasture, consisting mainly of perennial ryegrass, during the day. Biopsies from the mammary gland were taken and analyzed for mRNA expression of SCD1 and SCD5 by using quantitative real-time PCR. Milk yield as well as milk protein and fat contents did not differ among the 4 dietary treatments. Dietary supplementation with rapeseed oil and linseed oil increased proportions of C18:1 cis-9 and C18:3 cis-9,12,15 in blood plasma, respectively, compared with the other treatments. Supplementation with soybean oil and linseed oil increased milk FA proportions of C18:2 cis-9,12 and C18:3 cis-9,12,15, respectively, but supplementation with rapeseed oil did not increase C18:1 cis-9 in milk. Mammary SCD1 expression was reduced by supplementation of soybean oil compared with rapeseed oil and linseed oil. In contrast, SCD5 expression did not differ among the 4 treatments. The C16 and C18 desaturation indices, representing proxies for SCD activity, were lower for the soybean oil diet compared with the diet supplemented with a mixture of the 3 oils. In conclusion, our study shows that mammary SCD1 expression is significantly downregulated in dairy cows by feeding unprotected soybean oil compared with rapeseed oil or linseed oil, and this is partially reflected by the lower desaturase indices in the milk. Furthermore, mammary SCD5 expression appears to be differently regulated than expression of SCD1.  相似文献   

3.
Twelve multiparous Holstein cows (63 +/- 24 d in milk) were used in a replicated 4 x 4 Latin square with 28-d periods to evaluate conventional and high oil corn grains when fed at two different forage-to-concentrate ratios. Dietary treatments consisted of conventional or high oil corn supplementing a diet with a 25:25:50 mixture of corn silage: alfalfa: concentrate mix, or a high forage diet with a 30:30:40 mixture of corn silage: alfalfa: concentrate mix. Dry matter intake (28.1, 28.7, 26.9, and 26.2 kg/d for normal diets with conventional and high oil corn, and high forage diets with conventional and high oil corn, respectively) and milk yields (36.8, 37.2, 35.5, and 35.2 kg/d) were similar for conventional and high oil corn diets and were lower with the high forage diet, regardless of corn source. Milk fat concentrations were greater when cows were fed diets containing 60% forage (4.03 vs. 3.88%, for the 60 and 50% forages, respectively), but milk protein concentrations were not affected by forage content. Corn source did not affect milk fat or protein concentrations. Long-chain fatty acid concentrations, unsaturated fatty acid concentrations, and total 18:1 fatty acid concentrations were greater when cows were fed high oil corn but were unaffected by forage content of the diet. Concentrations of transvaccenic acid (0.58, 0.81, 0.62, and 0.69 g/100 g of fatty acids) and cis-9, trans-11 conjugated linoleic acid (0.28, 0.39, 0.32, and 0.33 g/100 g of fatty acids) were greater when cows were fed high oil compared with conventional corn when fed 50% forage but were similar for both corn sources at 60% forage. Total n-3 fatty acids were not affected by corn source or forage content. High forage diets decreased milk production and increased milk fat concentration. Feeding high oil corn increased concentrations of long-chain, unsaturated, transvaccenic, and conjugated linoleic fatty acids in milk; however, production of transvaccenic and conjugated linoleic acids were attenuated by high forage diet.  相似文献   

4.
Milk fat from Jersey cows contains less oleic acid (cis-C18:1) and more short- and medium-chain fatty acids than does milk fat from Holstein cows. The objective of this experiment was to determine responses in milk fat composition when Jersey and Holstein cows were fed diets either high (37% of dry matter) or low (27% of dry matter) in content of nonstructural carbohydrates (NSC) and supplemented with either 0 or 2.5% (of dry matter) of a mostly saturated fat source. Four Holstein cows and four Jersey cows were used in a Latin square design with 28-d periods; diets were in a 2 x 2 factorial arrangement. Fat supplementation decreased contents of fatty acids synthesized de novo within the mammary gland and increased contents of C18:0 and cis-C18:1. Low-NSC diets tended to increase C16:0 and to decrease C18:0, cis-C18:1, and C18:3. Despite the differences in fatty acid composition between breeds, both breeds generally responded similarly to dietary treatments. An interaction of breed and fat indicated that the content of cis-C18:1 in milk fat was increased more by supplemental fat in Holsteins than in Jerseys. Interactions of breed x fat and breed x carbohydrate type showed that the ratio of cis-C18:1 to C18:0 decreased when Jerseys were supplemented with fat but increased for Holsteins, and decreased when Jerseys were fed the low-NSC diet but increased when Holsteins were fed low NSC. The data are consistent with the hypothesis (Beaulieu and Palmquist, 1995, J. Dairy Sci. 78:1336-1344) that mammary activity of stearoyl-coenzyme A desaturase is lower in Jerseys than in Holsteins.  相似文献   

5.
A 3 x 3 Latin Square experiment was designed to compare 2 ways of bypassing the effects of the rumen with olive oil fatty acids in 'Manchega' dairy ewes. Treatments were a control diet, CaOFA (control diet plus 45 g of olive fatty acids as calcium soap), and OO (control plus 45 g/d of olive fatty acids as olive oil emulsified in skim milk) and bottle-fed to animals trained to maintain the reticular groove reflex). No differences were found in milk, protein, and lactose yields, but fat yield and milk fat content were greater in treatments with added fat (CaOFA and OO). Content of short- and medium-chain fatty acids in milk fat was greater for control treatment than for the other 2 groups, the yield of these fatty acids being similar for all 3 diets, except that of C12:0, which was greater for the control treatment. Content and yield of C18:0 and isomers of C18:1 others than oleic acid were greater in milk from the CaOFA diet than from the other 2 diets. Oleic acid content and yield were greater in milk after OO treatment (23.9% and 16.8 g/d, respectively), intermediate after CaOFA treatment (19.2% and 13.8 g/d, respectively), and lower after control diet (10.7% and 6.52 g/d, respectively). Linoleic acid yield and content were greater in ewes fed the OO diet than in those on the other 2 diets, both of which showed similar data. All these changes indicated that the "protected" olive fatty acids (as calcium soap) were severely affected by the rumen environment and that the use of the reticular groove reflex seems to be a more effective way of bypassing the rumen in adult lactating dairy ewes.  相似文献   

6.
Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n = 48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.  相似文献   

7.
《Journal of dairy science》2022,105(1):255-268
A major proportion of milk rumenic acid (RA; cis-9,trans-11 CLA) is synthesized through mammary Δ9-desaturation of vaccenic acid (VA; trans-11 18:1). Diet composition may determine the relative contribution of this endogenous synthesis to milk RA content, with effects that might differ between ruminant species. However, this hypothesis is mostly based on estimated values, proxies of stearoyl-CoA desaturase (SCD) activity, and indirect comparisons between publications in the literature. With the aim of providing new insights into this issue, in vivo Δ9-desaturation of 13C-labeled VA (measured via milk 13C-VA and -RA secretion) was directly compared in sheep and goats fed a diet without lipid supplementation or including 2% of linseed oil. Four Assaf sheep and 4 Murciano-Granadina goats were used in a replicated 2 × 2 crossover design to test the effects of the 2 dietary treatments during 2 consecutive 25-d periods. On d 22 of each period, 500 mg of 13C-VA were i.v. injected to each animal. Dairy performance, milk fatty acid profile, including isotope analysis, and mammary mRNA abundance of genes coding for SCD were examined on d 21 to 25 of each period. Supplementation with linseed oil improved milk fat concentration and increased the content of milk VA and RA. However, the isotopic tracer assay suggested no variation in the relative proportion of VA desaturated to milk RA, and the percentage of this CLA isomer deriving from SCD activity would remain constant regardless of dietary treatment. These results put into question a major effect of lipid supplementation on the endogenous synthesis of milk RA and support that mammary Δ9-desaturation capacity would not represent a limiting factor when designing feeding strategies to increase milk RA content. The lack of diet-induced effects was common to caprines and ovines, but inherent interspecies differences in mammary lipogenesis were found. Thus, the higher proportions of VA desaturation and endogenous synthesis of milk RA in sheep supported a greater SCD activity compared with goats, a finding that was not associated with the similar mRNA abundance of SCD1 in the 2 species. On the other hand, transfer efficiency of the isotopic tracer to milk was 37% higher in caprine than in ovine, suggesting a greater efficiency in mammary fatty acid uptake from plasma in caprine.  相似文献   

8.
DNA damage and antioxidants status were determined in liver of rat fed with olive and corn oil diets with and without ascorbic acid supplementation. In order to elucidate the role of fat intake, the study included a control and hyperlipidic diet. Liver antioxidant activities were significantly influenced by dietary fat and intake levels. In general, control groups fed with corn oil diets exhibited reduced liver antioxidant (SOD, catalase, and GSH-PX) and GSH levels compared with rats fed on olive oil diets. These activities were lower in rats consuming hyperlipidic diets relative to the control groups. Ascorbic acid supplementation resulted in a slight decrease of antioxidant activities both in the control and hyperlipidic diets with the exception of GSH that showed high levels in rats fed on an olive oil diet supplemented with ascorbic acid. The results of oxidative DNA damage as measured by the induction of 8-hydroxy deoxyguanosine (8-OHdG) clearly confirmed that corn diet (rich in polyunsaturated fatty acids) induced DNA damage in a dose- dependent manner. No induction of 8-OHdG was detected for the diet containing olive oil (monounsaturated diet). Ascorbic acid had no effect on rat fed on an olive oil diet. In contrast, for corn diets the ascorbic acid showed  相似文献   

9.
10.
Four ruminally lactating Holstein cows averaging 602 ± 25 kg of body weight and 64 ± 6 d in milk at the beginning of the experiment were randomly assigned to a 4 × 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of α-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health.  相似文献   

11.
We studied the effects of goat and cow milk fat on the digestive utilization of this nutrient and on some of the biochemical parameters that are related to the metabolisim of lipids, using rats with a resection of 50% of the distal small intestine and control animals (transected). The fat content in all the diets was 10% but the lipid quality was varied: the standard diet was based on olive oil, while the other two diets included fat obtained from lyophilized goat milk and cow milk, respectively. The digestive utilization of the fat was lower in the resected animals than in the transected ones for all three diets studied. In both resected and transected animals. the apparent digestibility coefficient (ADC) of the fat was greater with the standard diet (olive oil) than with diets whose fat content was provided by goat or cow milk. The digestive utilization of the fat was greater in the transected and resected rats receiving a diet of goat's milk (rich in medium-chain triglycerides) than those given a cow-milk-based diet and more closely approached the values obtained for olive oil. The consumption of goat milk reduced levels of cholesterol while levels of triglycerides, HDL, GOT and GPT remained with in the normal ranges, for both transected and resected animals. The advantageous effect of goat milk on the metabolisim of lipids with respect to cow milk suggests that the former should be included in the diet in eases of malabsorption snydrome.  相似文献   

12.
13.
The effects of concentrate-to-forage ratio and buffer on rumen fermentation and production parameters were examined in four rumen-cannulated cows (240 +/- 18 d in milk) fed a total mixed ration ad libitum in a 4 x 4 Latin square design. The treatments were a 50:50 concentrate to forage ratio with [1.2% of dry matter, (DM)] and without (0% of DM) buffer and a 75:25 concentrate to forage ratio with (1.2% of DM) and without (0% of DM) buffer. Rumen pH declined in response to increased concentrate but was not influenced by buffer. In the absence of the buffer, rumen acetate declined and propionate was elevated at the higher level of concentrate inclusion. The milk fat concentration was lower for cows fed the high concentrate diet without buffer; however, the addition of buffer to the diet prevented the milk fat depression. Milk fat depression was associated with elevated trans-C18:1 fatty acids in milk, which provides additional support for an inhibitory effect of these fatty acids on mammary fat synthesis. We concluded that the potential of nutrition as a tool to alter milk composition is greater in later lactation as these animals are better able to cope with the negative effects of high grain diets, and the treatment response is greater than in early lactation.  相似文献   

14.
Twelve multiparous Holstein cows averaging 65 (33 to 122) DIM were used in a 4 x 4 Latin square for 4-wk periods to determine whether feeding fish oil as fish meal would stimulate increased amounts of milk conjugated linoleic acid (cis-9, trans-11 C18:2; CLA) and transvaccenic acid (trans-11 C18:1; TVA) when the cows were fed extruded soybeans to supply additional linoleic acid. Treatment diets were 1) control; 2) 0.5% fish oil from fish meal; 3) 2.5% soybean oil from extruded soybeans; and 4) 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans. Diets were formulated to contain 18% crude protein and were composed (dry basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Intake of DM was not affected by diet. Milk production was increased by diets 2, 3, and 4 compared with diet 1 (control). Milk fat and milk protein percentages decreased with diets 3 and 4. Milk fat yield was not affected by treatments, but yield of milk protein was increased with supplemental fish meal and extruded soybeans or their blend. When diets 2, 3, or 4 were fed, concentrations of cis-9, trans-11 CLA in milk fat increased by 0.4-, 1.4-, and 3.2-fold, and TVA concentrations in milk fat increased by 0.4-, 1.8-, and 3.5-fold compared with the control milk fat. Increases in TVA and cis-9, trans-11 CLA were 91 to 109% greater when a blend of fish meal and extruded soybeans was fed than the additive effect of fish meal and extruded soybeans. This suggested that fish oil increased the production of CLA and TVA from other dietary sources of linoleic acid such as extruded soybeans.  相似文献   

15.
Twenty multiparous and 12 primiparous Holstein cows were assigned at calving to one of three grass hay-based diets containing either 14, 18, or 22% CP or an alfalfa hay-based diet containing 22% CP to examine the effect of protein level and forage source on milk yield and composition. The diets contained 23% ADF during wk 1 to 4 postpartum, which was lowered to 11% for wk 5 to 12 postpartum. Cows fed the 18 and 22% CP grass-based diets produced higher yields of milk, 4% FCM, fat, protein, and SNF than those fed the 14% CP diet during the high fiber period. In addition, cows fed the 22% CP grass-based diet had higher milk fat tests than those fed the 14% CP diet during the high fiber period, due primarily to an increase in short-chain fatty acid synthesis. Milk fat depression was more severe when cows were changed to low fiber diets while fed the 22% CP alfalfa-based diet than when fed the 22% CP grass-based diet. Depression in milk fat content was 15.0, 17.0, 15.6, and 27.0% for 14, 18, and 22% CP grass-based and 22% CP alfalfa-based diets, respectively. Cows receiving the 18 and 22% CP grass-based diets exhibited higher blood NEFA during the high fiber feeding period than those fed the 14% CP diet. After fiber was lowered, changes in rumen acetate:propionate ratios were unaffected by treatment. Lowering fiber level resulted in an increased milk CP percentage regardless of treatment. Grass hay appeared to be more effective than alfalfa hay in preventing depression in milk fat test upon the change to a low fiber diet.  相似文献   

16.
Conjugated linoleic acid (CLA) refers to a mixture of conjugated octadecadienoic acids of predominantly ruminant origin. The main isomer in bovine milk fat is the cis-9, trans-11 CLA. Interest in CLA increased after the discovery of its health-promoting properties, including potent anticarcinogenic activity. Two experiments were conducted to evaluate dietary strategies aimed at increasing the concentration of CLA in bovine milk fat. Both experiments were organized as a randomized complete block design with a repeated measures treatment structure. In Experiment 1, 28 Holstein cows received either a control diet or one of 3 treatments for a period of 2 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a dry matter (DM) basis, fed as a total mixed ration (TMR). The concentrate was partially replaced in the treatment groups with 24 ppm of monensin (MON), 6% of DM safflower oil (SAFF), or 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M). Average cis-9, trans-11 CLA levels in milk fat after 2 wk of feeding were 0.45, 0.52, 3.36, and 5.15% of total fatty acids for control, MON, SAFF, and SAFF/M, respectively. In Experiment 2, 62 Holstein cows received either a control diet or one of 5 treatment diets for a period of 9 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a DM basis, fed as a TMR. The concentrate was partially replaced in the treatment groups with 6% of DM safflower oil (SAFF), 6% of DM safflower oil plus 150 IU of vitamin E/kg of DM (SAFF/E), 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M), 6% of DM safflower oil plus 24 ppm of monensin plus 150 IU of vitamin E/kg of DM (SAFF/ME), or 6% of DM flaxseed oil plus 150 IU of vitamin E/kg of DM (FLAX/E). Average cis-9, trans-11 CLA levels during the treatment period were 0.68, 4.12, 3.48, 4.55, 4.75, and 2.80% of total fatty acids for control, SAFF, SAFF/E, SAFF/M, SAFF/ME, and FLAX/E, respectively. The combination of safflower oil with monensin was particularly effective at increasing milk fat CLA. The addition of vitamin E to the diet partially prevented the depression in milk fat associated with oilseed feeding, but had no significant effect on the concentration of CLA in milk.  相似文献   

17.
The objectives were to determine the effect of dietary fish oil (FO) on uterine secretion of PGF2alpha, milk production, milk composition, and metabolic status during the periparturient period. Holstein cows were assigned randomly to diets containing FO (n = 13) or olive oil (OO, n = 13). Cows were fed prepartum and postpartum diets that provided approximately 200 g/d from 21 d before the expected parturition until 21 d after parturition. The FO used contained 36% eicosapentaenoic acid (EPA, C20:5, n-3) and 28% docosahexaenoic acid (DHA, C22:6, n-3). Blood samples were obtained from 14 d before the due date until d 21 postpartum. A total of 6 FO and 8 OO cows without periparturient disorders were used in the statistical analyses of PGF2alpha-metabolite (PGFM) and metabolite concentrations. Length of prepartum feeding with OO or FO did not differ. Proportions of individual and total n-3 fatty acids were increased in caruncular tissue and milk of cows fed FO. The combined concentrations of EPA and DHA in caruncular tissue were correlated positively with the number of days supplemented with FO. Cows fed FO had reduced concentrations of plasma PGFM during the 60 h immediately after parturition compared with cows fed OO. Concentrations of prostaglandin H synthase-2 mRNA and protein in caruncular tissue were unaffected by diet. Production of milk and FCM were similar between cows fed the two oil diets. However, cows fed FO produced less milk fat. Feeding FO reduced plasma concentrations of glucose. Dietary fatty acids given during the periparturient period can reduce the uterine secretion of PGF2alpha in lactating dairy cows and alter the fatty acid profile of milk fat.  相似文献   

18.
Gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) were fed with two experimental diets: olive pomace diet and olive pomace oil diet, in order to examine whether fish oil substitution in fish feeds by olive oil production wastes, such as olive pomace and olive pomace oil, has an influence on growth performance, fatty acid composition and cardio protective properties of fish. Gilthead sea bream fed with both experimental diets exhibited satisfactory growth performance factors while sea bass did not. The total lipids of gilthead sea bream fed with olive pomace diet contained statistically decreased levels of fatty acids, while exhibited the most potent biological activity against platelet aggregation induced by Platelet Activating Factor. These data indicate that olive pomace can be used as a partial substitute of fish oil in fish feed improving its cardio protective properties.  相似文献   

19.
Milk fat was investigated in lactating dairy cows fed diets supplemented with Ca salts of trans fatty acids (Ca-tFA) or Ca salts of conjugated linoleic acids (Ca-CLA). Forty-five Holstein cows (115 days in milk) were fed a control diet (51% forage; dry matter basis) supplemented with 400 g of EnerG II (Ca salts of palm oil fatty acids) for 2 wk; subsequently, 5 groups of 9 cows each were assigned for 4 wk to the control diet or diets containing 100 g of Ca-CLA or 100, 200, or 400 g of Ca-tFA in a randomized block design. Treatments had no effect on dry matter intake, milk production, protein, lactose, or somatic cell count. Milk fat percentage was reduced from 3.39% in controls to 3.30, 3.04, and 2.98%, respectively, by the Ca-tFA diets and to 2.54% by the Ca-CLA diet. Milk fat yield (1.24 kg/d in controls) was decreased by 60, 130, and 190 g/d with increasing dose of Ca-tFA and by 290 g/d with the Ca-CLA supplement. Consistent with increased endogenous synthesis of cis-9-containing CLA from precursors provided by the Ca-tFA diets, total CLA were similar in milk of cows fed Ca-CLA or Ca-tFA. Compared with controls, the Ca-CLA diet increased trans-10, cis-12-18:2 yield in milk, without altering levels of trans-18:1 isomers. In contrast, yields of most trans-18:1 isomers were elevated in milk of cows fed Ca-tFA diets, whereas yields of trans-10, cis-12-18:2 remained similar to control values. We conclude that milk fat depression can occur without an increase in trans-10, cis-12-18:2 in milk and that other components, perhaps the trans-10-18:1 isomer, may be involved.  相似文献   

20.
Diet-induced milk fat depression (MFD) is a multifactorial condition resulting from the interaction of numerous risk factors, including diet fermentability and unsaturated fatty acids concentration, feed additives, and individual cow effects. 2-Hydroxy-4-(methylthio)butanoate (HMTBa) is a methionine analog that has been observed to increase milk fat in some cases, and interactions with MFD risk factors may exist. The objective was to evaluate the effect of HMTBa supplementation on milk fat synthesis in cows with different levels of milk production and fed diets with increasing risk of biohydrogenation-induced MFD. Sixteen high-producing cows (44.1 ± 4.5 kg of milk/d; mean ± SD) and 14 low-producing (31.4 ± 4.3 kg of milk/d) were used in a randomized block design. Treatments were unsupplemented control and HMTBa fed at 0.1% of diet dry matter (25 g/d at 25 kg of dry matter intake). The experiment was 70 d and included a 14-d covariate period followed by 3 phases whereby diets were fed with increasing risk of MFD to determine the interaction of treatment and diet-induced MFD. During the low-risk phase, the base diet was balanced to 33.5% neutral detergent fiber (NDF) and had no exogenous oil (28 d); during the moderate-risk phase, the diet was balanced to 31% NDF and contained 0.75% soybean oil (14 d); and, during the high-risk phase, the diet was balanced to 28.5% NDF and contained 1.5% soybean oil (14 d). An interaction of treatment, production-level, and dietary phase was observed. Low producing cows neither experienced substantial biohydrogenation-induced MFD nor a response in milk fat to HMTBa supplementation. In high-producing cows, HMTBa maintained higher milk fat concentration during the moderate- (2.94 vs. 3.49%) and high-risk (2.38 vs. 3.11%) phases. High-producing cows receiving HMTBa also had greater milk fat yield (0.94 vs. 1.16 kg/d) and lower trans-10 C18:1 (6.11 vs. 1.50) during the high-risk phase. In conclusion, HMTBa increased milk fat in situations with a high risk of biohydrogenation-induced MFD by decreasing absorption of alternate biohydrogenation intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号