首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用激光脉冲试验法研究不同淬火和回火工艺对高速列车制动盘用Cr-Mo-V钢在50~800℃时的比热容、热扩散系数和导热系数。结果表明,当试验温度低于700℃时,随着试验温度的提高,试验料热扩散系数和导热系数逐渐降低,比热容逐渐提高;当试验温度超过700℃时,试验料热扩散系数和导热系数又随之提高,比热容随之下降。当试验温度低于700℃时,随着回火温度或淬火温度的提高,试验料在不同试验温度条件下热扩散系数和导热系数均稍有提高,比热容稍有降低;当试验温度为800℃时,几组试验料的比热容、热扩散系数和导热系数基本相当。   相似文献   

2.
The microstructures and properties of Al–45%Si alloy prepared by liquid–solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous Al matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.  相似文献   

3.
采用机械活化法制粉,制备了活化元素Co含量不同的Mo-Cu合金.通过对密度、硬度、电导率、热导率、热膨胀系数的测试及组织的观察,研究了Co元素对Mo-Cu合金致密化工艺及其组织性能的影响.结果表明,Co与Mo形成了中间相Co7Mo6,这有利于烧结致密化温度的降低,当1 250℃烧结1 h后合金相对密度达97.71%;随着Co含量的添加,Mo-Cu合金的硬度值增加,电导率、热导率下降较为明显,而热膨胀系数变化幅度不大,与Al2O3陶瓷基片热膨胀系数比较接近;其显微组织呈细小均匀的网络结构.  相似文献   

4.
The thermal diffusion coefficient,heat capacity,thermal conductivity,and thermal expansion coefficient of Cu76.12Al23.88 alloy before and after cryogenic treatment in the heating temperature range of 25°C to 600°C were measured by thermal constant tester and thermal expansion instrument.The effects of cryogenic treatment on the thermal physical properties of Cu76.12Al23.88 alloy were investigated by comparing the variation of the thermal parameters before and after cryogenic treatment.The results show that the variation trend of the thermal diffusion coefficient,heat capacity,thermal conductivity,and thermal expansion coefficient of Cu76.12Al23.88 alloy after cryogenic treatment was the same as before.The cryogenic treatment can increase the thermal diffusion coefficient,thermal conductivity,and thermal expansion coefficient of Cu76.12Al23.88 alloy and decrease its heat capacity.The maximum difference in the thermal diffusion coefficient between the before and after cryogenic treatment appeared at 400°C.Similarly,thermal conductivity was observed at 200°C.  相似文献   

5.
以硼质量分数为0.5%的Cu–B合金为金属基体以及平均粒径为500 μm的金刚石颗粒为增强体,采用气压熔渗法制备金刚石/Cu–B合金复合材料,研究气压参数对其组织结构和热物理性能的影响规律。结果表明:随着气压升高,金刚石与Cu–B合金之间的界面结合效果、导热性能均增强,热膨胀系数减小;当气压为10 MPa时,其界面结合效果最优,界面处生成的碳化物层将金刚石完全覆盖,且100 ℃时的样品热导率为680.3 W/(m·K),热膨胀系数为5.038×10?6 K?1,满足电子封装材料的热膨胀系数要求。   相似文献   

6.
The thermal diffusion coefficient, thermal conductivity, and thermal expansion coefficient of CuCr alloy prepared by infiltration were measured by thermal constant tester and dilatometer before and after high pressure heat treatment, at the same time, the effect of high pressure treatment on the thermal physical properties of CuCr alloy was discussed by the analysis of its microstructure. The experimental results show that high pressure heat treatment can increase the thermal diffusion coefficient and thermal conductivity of CuCr alloy, but it changes slightly in the pressure range of 1–6 GPa. As for thermal expansion coefficient, when the temperature is higher than 130 °C, it is obviously higher than that of the alloy without high pressure treatment after 1 GPa pressure treatment, and the higher the temperature is, the larger their differences are.  相似文献   

7.
借助力学性能测试、金相显微组织观察、扫描电子显微组织观察和透射电镜观察等测试分析手段,研究均匀化处理对5A01铝合金铸态板坯显微组织和力学性能的影响。结果表明,经过不同均匀化处理后,该合金抗拉强度,屈服强度,伸长率都比铸态的有了明显提高。但不同均匀化条件下的合金的硬度、电导率、抗拉强度和屈服强度基本不变。提高均匀化温度,减小枝晶间距可加快均匀化进程,并且残余显微偏析指数随枝晶间距的减小呈平方衰减。  相似文献   

8.
解决传统刀具耐磨涂层导热性差的问题。本文采用直流磁控溅射方法,在不同氮气流量下制备了(TiAlTaCrZr)N涂层,研究了不同氮含量对涂层微结构和硬度、结合力、导热等性能的影响。随着氮气流量的增加,涂层中N含量增加,涂层微观结构会由纳米晶向柱状晶转变。涂层的硬度从TiAlTaCrZr 涂层的11.0 GPa增加到5 SCCM氮流量时(TiAlTaCrZr)N 涂层的20.6 GPa。涂层在氮气流量为5 SCCM时膜基结合力可达到130 N以上,之后随着氮含量增加逐渐降低。(TiAlTaCrZr)N涂层的导热性均优于TiAlN涂层的导热性,但随着氮含量增加导热性降低。(TiAlTaCrZr)N涂层的高导热性、高结合力、高硬度等特性使其在钛合金高速切削时切削距离比TiAlN涂层提高175%,这为钛合金加工提供了一种新型耐磨涂层。  相似文献   

9.
K.  K.  Ajith Kumar  Abhilash Viswanath  T.  P.  D.  Rajan  U.  T.  S.  Pillai  B.  C.  Pai 《金属学报(英文版)》2014,27(2):295-305
In the present investigation, composites with silicon carbide particle (SiCp) as reinforcement and AZ91 magnesium alloy as matrix have been synthesized using liquid metal stir-casting technique with optimized processing conditions. The composites with good particle distribution in the matrix, and better grain refinement and good interfacial bonding between the matrix and reinforcement have been obtained. The effect of SiCp content on the physical, mechanical, and tribological properties of Mg-based metal matrix composite (MMC) is studied with respect to particle distribution, grain refinement, and particle/matrix interfacial reactions. The electrical conductivity, coefficient of thermal expansion, microas well as macro-hardness, tensile and compressive properties, and the fracture behavior of the composites along with dry sliding wear of the composites have been evaluated and compared with the base alloy.  相似文献   

10.
闭孔泡沫铝的导热性能   总被引:5,自引:0,他引:5  
凤仪  朱震刚  陶宁  郑海务 《金属学报》2003,39(8):817-820
研究了孔隙率、孔径对闭孔泡沫铝合金导热系数的影响,结果表明,由于大量孔洞的存在,泡沫铝的导热系数较同样成分的实体材料显著下降,孔隙率在0.80—0.93范围内,约为实体材料的1/30—1/80,随着孔隙率的增加,导热系数迅速下降,而孔径对泡沫铝的导热系数影响不大.从串-并联和并-串联模型出发,分析了孔隙率对泡沫铝材料导热系数的影响,发现串-并联模型更能反映泡沫铝的结构特征,与实测值吻合更好。  相似文献   

11.
采用喷射成形技术制备了新型电子封装材料60wt%Si-Al合金,选用两种热等静压工艺对其进行致密化处理,研究热等静压对材料组织和性能的影响。观察、分析了热等静压致密化后合金组织,测试了热等静压后合金的致密度、导热及热膨胀性能。结果表明,热等静压可有效减少或消除喷射成形60wt%Si-Al合金坯件内部的缩松缩孔,使合金接近理论密度。固态(520℃)热等静压后的合金相比半固态(600℃)热等静压合金,表现出更高的致密度、热导率和更低的热膨胀系数。  相似文献   

12.
电子封装材料过共晶硅-铝合金的组织特征和热性能(英文)   总被引:2,自引:0,他引:2  
采用快速凝固制粉技术和粉末热压烧结技术制备55%Si-Al,70%Si-Al和90%Si-Al3种过共晶含量的硅铝合金。结果表明:雾化沉积是制备过共晶硅铝合金的有效的快速凝固工艺,采用该工艺获得的快速凝固硅铝合金粉末的尺寸小于50μm。快速凝固的硅铝合金粉末经过550°C和700MPa热压后,获得3种不同成分合金试样的相对密度分别为99.4%,99.2%和94.4%。作为电子封装材料,3种试样的热导率、热膨胀系数和电导率都可以满足应用要求。55%Si-Al合金的热膨胀系数随温度的变化最剧烈,但是该合金具有较好的热导率。90%Si-Al合金的热膨胀系数较小,但是其热导率最差,小于100W/(m·K)。70%Si-Al合金具备热沉材料所应具备的优良的热导率和热膨胀系数的综合性能。  相似文献   

13.
采用定向凝固技术,研究了一定温度梯度下不同拉伸速度对Mg-3Zn-Y合金导热性能的影响。研究表明,随着拉伸速度的增加,柱状晶的平均宽度逐渐变窄,合金的热导率先增加后降低。  相似文献   

14.
采用正交试验法确定了CuIn5合金放电等离子烧结(SPS)的最佳工艺参数,研究了烧结温度、烧结时间、烧结压力对CuIn5合金的致密度、硬度和导电性能的影响。结果表明:影响CuIn5合金致密度和硬度的主要因素均为烧结温度,其次为烧结压力,烧结时间的影响最小;影响CuIn5合金电导率的主要因素为烧结温度,其次为烧结时间和烧结压力。利用SPS技术制备CuIn5合金的最佳工艺为烧结温度850 ℃,烧结时间5 min,烧结压力50 MPa。采用最佳工艺制备的CuIn5合金组织均匀致密,In固溶于Cu中形成固溶体,其晶格常数为0.362 865 nm,晶格畸变率为0.38%,致密度为99.56%,显微硬度为136.3 HV0.1,导电率为37.86%IACS。  相似文献   

15.
采用液相烧结法制备出Mo-30Cu合金,利用XRD,SEM,TEM等对该合金的组织进行分析观察,并研究烧结温度、相对密度对Mo-30Cu合金组织性能的影响.结果表明:该合金组织分布均匀,组织中只含有Mo、Cu两相,在两相之间有一Mo、Cu互溶区;烧结温度是影响Mo-30Cu性能的最重要因素,在1300℃烧结的合金相对密度为99.6%,热导率为196 W·(m·K)-1.  相似文献   

16.
The microstructure and thermophysical properties of aluminum-matrix composites have been studied, in which a granulated Al–Zn–Mg–Cu alloy has been used as the matrix, and SiC particles taken in the amounts of 10, 20, and 30 vol % have bee used as the filler. It has been shown that, with an increase in the amount of the filler, the temperatures of the solidus and liquidus of the composites and the values of the thermal expansion coefficient and density increase, whereas the heat capacity, thermal conductivity, and thermal diffusivity decrease. The heat capacity of the composite depends on the amount of the filler: upon heating from 25 to 500°С, the heat capacity of the composite with 10 vol % SiC increases by only 16%, while that of the composite with 20 vol % SiC increases by 19%; and, at 39 vol % SiC, it increases by 36%.  相似文献   

17.
High-pressure torsion (HPT) is a type of severe plastic deformation (SPD) that is highly suited to produce bulk ultrafine-grained and nanocrystalline materials, as it introduces many grain boundaries as well as dislocations and point defects. In this paper, HPT-mediated nanocrystallization was used to reduce the thermal conductivity and enhance the Seebeck coefficient of skutterudites. Both p- and n-type skutterudites have been processed by HPT with 4 and 5 GPa at temperatures up to 773 K, resulting in a strongly strengthened nanocrystalline structure, revealing oriented, lamellar-shaped crystallites with a size of ∼50 nm and an enhanced dislocation density. In comparison with ball-milled plus hot-pressed skutterudites, the HPT-processed samples show a reduction of the thermal conductivity up to 40%. This and the slightly higher Seebeck coefficient are the reasons why HPT proved to enhance the figure of merit (ZT) values up to a factor of 2, in spite of a markedly enhanced electrical resistivity.  相似文献   

18.
采用Gleeble-1500热物理模拟实验机对4032铝合金进行等温压缩实验,研究应变速率在0.02s-1~5s-1和变形温度为370℃~490℃的4032铝合金的热变形特征,并根据材料动态模型构建4032铝合金的热加工图.应用OLYMPUS PMG3型光学显微镜观察分析压缩后试样的微观组织.研究表明:4032铝合金最佳热加工工艺参数为:变形温度460℃~490℃,应变速率0.03s-1~0.36s-1;4032铝合金热加工的软化机制主要是动态回复.  相似文献   

19.
Transmission electron microscopy observations and thermoelectrical property measurements (electrical conductivity, Seebeck coefficient and thermal conductivity) at room temperature have been completed on two fully dense polycrystalline p-type bismuth–tellurium–antimony alloy samples. It is shown that the presence of antimony oxide-based nanosized inclusions (controlled as to volume fraction and size distribution), homogeneously dispersed in the surrounding matrix leads to a dimensionless figure of merit (ZT) of ~1.3 at room temperature. For comparison, when such inclusions are missing the ZT value is only 0.6.  相似文献   

20.
Cr-Cu-Si金属硅化物合金组织与耐磨性   总被引:1,自引:0,他引:1  
利用激光熔炼材料制备技术,制得了由铜基固溶体增韧的Cr5Si3/CrSi金属硅化物新型耐磨合金,分析了合金的显微组织结构,测定了合金的显微硬度,考察了合金在室温干滑动磨损条件下的耐磨性能。研究结果表明:Cr-Cu-Si金属硅化物合金显微组织由Cr5Si3金属硅化物初生树枝晶、CrSi相的初生树枝晶及枝晶间铜基固溶体组成,由于金属硅化物Cr5Si3及CrSi的高硬度、强原子间结合力与铜基固溶体的优异导热性、摩擦相容性,上述激光熔炼Cr-Cu-Si金属硅化物合金材料在室温滑动干摩擦试验条件下表现出优异的耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号