首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new grid generation method for tool path planning for five-axis machining based on minimization of the kinematics error. First, the procedure constructs a space-filling curve so that the scallops between the resulting tracks of the tool do not exceed a prescribed tolerance. At the second stage (which is the subject of this paper) a one-dimensional grid along the space-filling curve is generated using direct minimization of the kinematics error. A closed form representation of the kinematics error as a function of locations cutter contact points is derived from the inverse kinematics transformations associated with a particular five-axis machine and obtained through automatic symbolic calculations. The grid of cutter location points is generated so that it minimizes the kinematics error. Numerical and cutting experiments demonstrate that the proposed procedure outperforms distribution of points based on the equi-arc-length principle. Finally, we show that our optimization routine requires less points than that based on sequential point insertion and numerical evaluation of the cost function, such as bisection.  相似文献   

2.
To transfer power, a pair of spiral bevel or hypoid gears engages. From beginning to end of two tooth surfaces engaging with each other: for their rigid property, they contact at different points; and for their plastic property, they contact at small ellipses around the points. On each surface, the contact line (or called as contact path) by connecting these points and the contact area by joining these ellipses are critical to driving performance. Therefore, to machine these surfaces, it is important to machine the contact line and area with higher accuracy than other areas. Five-axis flank milling is efficient and is widely used in industry. However, tool paths for flank milling the gears, which are generated with the existing methods, can cause overcuts on the contact area with large machining errors. To overcome this problem, an innovative approach to NC programming for accurate and efficient five-axis flank milling of spiral bevel or hypoid gears is proposed. First, the necessary conditions of the cutter envelope surface tangent with the designed surface along a designed line are derived to address the overcut problem of five-axis milling. Second, the tooth surface including the contact line and area are represented using their machining and meshing models. Third, according to the tooth surface model, an optimization method based on the necessary conditions is proposed to plan the cutter location and orientation for flank milling the tooth surface. By using these planned tool paths, the overcut problem is eliminated and the machining errors of contact area are reduced. The proposed approach can significantly promote flank milling in the gear manufacturing industry.  相似文献   

3.
Existing works in optimization of five-axis machining mainly focus on the machining efficiency and precision, while the dynamic performance of the machine tools has not been fully addressed, especially in high-speed machining, in which the rotary actuators have limited dynamic ability. In this paper, a study is reported on how to generate a tool path so that the maximal angular accelerations of the rotary axes of the five-axis machine can be reduced. Two independent methods are proposed for this task: (1) by optimizing the setup of the workpiece on the machine’s table, and (2) by finding better tilt and yaw angles for the tool orientations. In this paper, the setup parameters of the workpiece are incorporated into the inverse kinematic equations, and angular acceleration functions are established according to the numerical solutions of those equations. While varying the tool orientations unquestionably would affect the surface quality of the machining, we introduce the so called Domain of Geometric Constraints that will restrict the allowable tilt and yaw angle of the tool at the cutter contact points on the part surface, so to ensure the satisfaction of the requirement of both local-gouging-free and cusp-height. For the first method–finding the optimal workpiece setup–a heuristic-based approach, i.e., the Genetic Algorithm (GA), is adopted, whereas for the second method–the constrained optimization of tool orientations–we present an elaborate algorithm based on the results from the analysis conducted by the authors. At the end of the paper, computer simulation experiments are reported that demonstrate the effectiveness of our proposed methods and algorithms.  相似文献   

4.
针对截平面法规划的三角网格表面的刀轨长度较长、加工表面残留高度不均匀的问题,提出一种基于改进截平面法的等残留高度刀轨生成算法.首先在估算刀触点轨迹线垂直方向曲率半径的基础上,计算刀触点轨迹投影线并对其进行修正,去除其中冗余的投影点;然后由修正后的刀触点轨迹投影线构造驱动表面,利用驱动表面和网格表面迭代计算刀触点轨迹线;最后由刀触点轨迹线计算无干涉刀轨.与截平面法生成的刀轨进行比较分析的结果表明,文中算法生成的刀轨长度较小且获得的残留高度保持均匀,适合于三角网格表面表示的复杂表面的精加工.  相似文献   

5.
Five-axis CNC flank machining has been commonly used in the industry for shaping complex geometries. Geometrical errors typically occur in five-axis flank finishing of non-developable surfaces using a cylindrical cutter. Most existing tool path planning methods adjust discrete cutter locations to reduce these errors. An excessive change in the cutter center or axis between consecutive cutter locations may deteriorate the machined surface quality. This study developed a tool path generation method for minimizing geometrical errors on finished surfaces while preserving high-order continuity in the cutter motion. A tool path is described using the moving trajectory of the cutter center and changes in two rotational angles in compact curve representations. An optimization scheme is proposed to search for optimal curve control points and the resulting tool path. A curve subdivision mechanism progressively increases the control points during the search process. Simulation results confirm that the proposed method not only enhances the computational efficiency of tool path generation but also improves the machined surface finish. This study provides a computational approach for precision tool path planning in five-axis CNC flank finishing of ruled surfaces.  相似文献   

6.
Presented in this paper is a tool path generation method for multi-axis machining of free-form surfaces using Bézier curves and surfaces. The tool path generation includes two core steps. First is the forward-step function that determines the maximum distance, called forward step, between two cutter contact (CC) points with a given tolerance. The second component is the side step function which determines the maximum distance, called side step, between two adjacent tool paths with a given scallop height. Using the Bézier curves and surfaces, we generate cutter contact (CC) points for free-form surfaces and cutter location (CL) data files for post processing. Several parts are machined using a multi-axis milling machine. As part of the validation process, the tool paths generated from Bézier curves and surfaces are analyzed to compare the machined part and the desired part.  相似文献   

7.
This article presents a method of generating iso-planar piecewise linear NC tool paths for three-axis surface machining using ball-end milling directly from discrete measured data points. Unlike the existing tool path generation methods for discrete points, both the machining error and the machined surface finish are explicitly considered and evaluated in the present work. The primary direction of the generated iso-planar tool paths is derived from the projected boundary of the discrete points. A projected cutter location net (CL-net) is then created, which groups the data points according to the intended machining error and surface finish requirements. The machining error of an individual data point is evaluated within its bounding CL-net cell from the adjacent tool swept surfaces of the ball-end mill. The positions of the CL-net nodes can thus be optimized and established sequentially by minimizing the machining error of each CL-net cell. Since the linear edges of adjacent CL-net cells are in general not perfectly aligned, weighted averages of the associated CL-net nodes are employed as the CL points for machining. As a final step, the redundant segments on the CL paths are trimmed to reduce machining time. The validity of the tool path generation method has been examined by using both simulated and experimentally measured data points.  相似文献   

8.
This paper proposes a novel method for generation of optimized tool path in 5-axis flank milling of ruled surfaces based on Particle Swarm Optimization (PSO). The 3D geometric problem, tool path generation, is transformed into a mathematical programming task with the machined surface error as the objective function in the optimization. This approach overcomes the limitation of greedy planning methods employed by most previous studies. By allowing the cutter to move backforward, reciprocating tool path produces smaller machining error compared with the traditional one consisting of only forward cutter movement. A cutting experiment is conducted with different tool paths and the CMM measurement verifies the effectiveness of the proposed method.  相似文献   

9.
We consider a new algorithm designed for five-axis milling to minimize the kinematics error near the stationary points of the machined surface. Given the tool orientations, the algorithm optimizes the required rotations on the set of the solutions of the corresponding inverse kinematics equations. We solve the problem by means of the shortest path scheme based on minimization of the kinematics error.We present an application of the proposed algorithm to tool-path planning and demonstrate the efficiency of the proposed scheme verified by practical machining.  相似文献   

10.
Five-axis CNC machines represent a particular class of machine tools characterized by superior versatility. Little attempts were made in the past to compare directly their performances through a common indicator. In this sense, the present study proposes nonlinearity error as a valuable method to quantify the kinematic efficiency of a particular five-axis configuration. Nonlinearity error is defined as the maximum deviation of the cutter-location point from the reference plane generated by the initial and final orientations of the tool during linearly interpolated motions of the cutter along the intended tool path. The proposed concept has demonstrated that nonlinearity error occurs approximately around the middle of the linearly interpolated interval and therefore has validated the current post-processing practice of halfway cutter-location point insertion. The employment of nonlinearity error in the evaluation of the kinematic efficiency of vertical spindle-rotating five-axis machine tools revealed that for an identical machining task, configurations involving the vertical rotational axis tend to move more than those involving only horizontal rotational axes.  相似文献   

11.
曲面数控加工中面向NURBS刀具路径生成的刀位点分段算法   总被引:1,自引:0,他引:1  
曲面数控加工中,NURBS刀具路径生成技术需要在大量有序刀位点中提取适合于NURBS刀具路径表示的刀位点段,刀位点的分段质量是决定NURBS刀具路径生成的前提.通过分析NURBS刀具路径的特点,对由刀位点表示的刀具路径之间的连接方式和边界点进行分类,提出通过层次聚类法将刀具路径进行分段的算法.在此基础上,通过判断连接点的类型来提取合适的刀位点段以进行NURBS刀具路径的生成.实例结果表明,该算法分段可靠、快捷,对不同曲线曲面轮廓刀具轨迹点进行分段的适应性强,分段结果可以满足NURBS刀具路径的生成.  相似文献   

12.
Due to the complexity of geometry, the feed direction with maximal machining strip width usually varies among different regions over a freeform surface or a shell of surfaces. However, in most traditional tool path generation methods, the surface is treated as one machining region thus only local optimisation might be achieved. This paper presents a new region-based tool path generation method. To achieve the full effect of the optimal feed direction, a surface is divided into several sub-surface regions before tool path computation. Different from the scalar field representation of the machining strip width, a rank-two tensor field is derived to evaluate the machining strip width using ball end mill. The continuous tensor field is able to represent the machining strip widths in all feed directions at each cutter contact point, except at the boundaries between sub-regions. Critical points where the tensor field is discontinuous are defined and classified. By applying critical points in the freeform surface as the start for constructing inside boundaries, the surface could be accurately divided to such that each region contain continuous distribution of feed directions with maximal machining strip width. As a result, tool paths are generated in each sub-surface separately to achieve better machining efficiency. The proposed method was tested using two freeform surfaces and the comparison to several leading existing tool path generation methods is also provided.  相似文献   

13.
Curvilinear space-filling curves for five-axis machining   总被引:1,自引:0,他引:1  
The paper presents a new combination of two methods for tool path generation for five-axis machining proposed earlier by the authors. The first method is based on the grid generation technologies whereas the second method exploits the space-filling curve approach. Combination of the two techniques is superior with regard to the conventional methods and with regard to the case when the two methods are applied independently. In particular the algorithm allows us to generate tool paths for workpieces with complex boundaries as well as when the scallop and gouging constraints are changing sharply and irregularly. In this case the conventional methods are inefficient, whereas the proposed algorithms construct the required tool path and reduce the length of the path and the time of the machining. The numerical experiments are complemented by the real machining as well as by the test simulations on the Unigraphics 18.  相似文献   

14.
This paper presents a swept envelope approach to determining tool position for five-axis ruled surface machining. The initial tool position is traditionally located to contact with two directrices of a ruled surface. The swept profile of the tool is then determined based on the tool motion. By comparing the swept profile with the ruled surface, the tool position is corrected to avoid machining errors. The cutter's swept envelope is further constructed by integrating the intermediate swept profiles, and applied to NC simulation and verification. This paper presents the explicit solution for the swept profile of a taper-end cutter in five-axis ruled surface machining. The relation of the ruled surface geometry, the tool motion and the machining errors is developed. Therefore, the error sources can be detected early and prevented during tool path planning. The explicit swept envelope indicates that the machined surface is not a ruled surface in five-axis ruled surface machining. Manufacturing industries should take extra care in high precision ruled surface machining. Computer illustrations and example demonstrations are shown in this paper. The results reveal that the developed method can accurately position tool location and reduce machining errors for five-axis ruled surface machining.  相似文献   

15.
This paper presents a machining potential field (MPF) method to generate tool paths for multi-axis sculptured surface machining. A machining potential field is constructed by considering both the part geometry and the cutter geometry to represent the machining-oriented information on the part surface for machining planning. The largest feasible machining strip width and the optimal cutting direction at a surface point can be found on the constructed machining potential field. The tool paths can be generated by following the optimal cutting direction. Compared to the traditional iso-parametric and iso-planar path generation methods, the generated MPF multi-axis tool paths can achieve better surface finish with shorter machining time. Feasible cutter sizes and cutter orientations can also be determined by using the MPF method. The developed techniques can be used to automate the multi-axis tool path generation and to improve the machining efficiency of sculptured surface machining.  相似文献   

16.
This paper studies optimization of tool path planning in 5-axis flank milling of ruled surfaces using advanced Particle Swarm Optimization (PSO) methods with machining error as an objective. We enlarge the solution space in the optimization by relaxing the constraint imposed by previous studies that the cutter must make contact with the boundary curves. Advanced Particle Swarm Optimization (APSO) and Fully Informed Particle Swarm Optimization (FIPS) algorithms are applied to improve the quality of optimal solutions and search efficiency. Test surfaces are constructed by systematic variations of three surface properties, cutter radius, and the number of cutter locations comprising a tool path. Test results show that FIPS is most effective in reducing the error in all the trials, while PSO performs best when the number of cutter locations is very low. This research improves tool path planning in 5-axis flank milling by producing smaller machining errors compared to past works. It also provides insightful findings in PSO based optimization of the tool path planning.  相似文献   

17.
针对非可展直纹面五轴侧铣加工的问题,分析了非可展直纹面几何特点,根据等距 映射下的极差不变性,提出了一种计算非可展直纹面叶片五轴侧铣刀位数据的新方法。以刀具包 络面与设计曲面之间的整体误差为优化目标,建立了圆柱铣刀侧铣非可展直纹面的刀位计算方 法,运用四点偏置法确定初始刀位,采用最小二乘法对初始刀位进行优化,建立刀轴矢量偏转模 型进一步修正刀位以减小过切误差。通过实例计算分析,表明该方法可以在一定程度上减小加工 误差。  相似文献   

18.
This paper presents a global optimization method to generate a tool path for flank milling free-form surfaces with a generic cutter based on approximation using the tool envelope surface. It is an extension of our previous work [Gong Hu, Cao Li-Xin, Liu Jian. Improved positioning of cylindrical cutter for flank milling ruled surfaces. Computer Aided Design 2005; 37:1205–13]. First, given initial tool path or tool axis trajectory surface, the grazing points of the tool envelope surface can be calculated. Second, the errors between the tool envelope surface and the designed surface along the normal direction of the tool envelope surface are calculated. Based on this new definition of error, an optimization model is established to get the global optimized tool axis trajectory surface. In order to simplify the calculation, two variants of this method based on the least square criterion are proposed to solve this model. Since this method is really based on the tool envelope surface, it can reduce the initial machining errors effectively. The proposed method can be used not only for cylindrical cutters and conical cutters, but also for generic cutters with a surface of revolution. In addition to ruled surfaces, it also can be used for machining non-ruled surfaces. Finally, several examples are given to prove its effectiveness and accuracy. The generated tool paths and calculated grazing points for test are available in supplementary files for the readers’ convenience in verifying this work in different CAD/CAM systems.  相似文献   

19.
针对线性插补刀轨不连续且插补点多的缺点,提出了一种基于STL模型的口腔修复体5轴高速铣削数控加工刀轨优化策略。以去除不必要的插补点,简化加工刀轨的数量,优化刀轴矢量包络的曲面为平滑变化的规则面,实现了一种支持HEIDENHAIN数控系统的样条插补新方法。运用该策略线性插补的G代码成功地被转换成样条代码,基于Vericut仿真器,仿真加工出了磨牙冠修复体。结果表明,该优化策略不仅能缩短切削时间、提高加工质量,而且可避免切削颤振。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号