首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, multiwalled carbon nanotubes (MWCNT), after previous oxidation, are functionalized with excess (3‐glycidyloxypropyl)trimethoxysilane (GLYMO) and used as reinforcement in epoxy matrix nanocomposites. Infrared, Raman, and energy‐dispersive X‐ray spectroscopies confirm the silanization of the MWCNT, while transmission electron microscopy images show that oxidized nanotubes presented less entanglement than pristine and silanized MWCNT. Thickening of the nanotubes is also observed after silanization, suggesting that the MWCNT are wrapped by siloxane chains. Field‐emission scanning electron microscopy reveals that oxidized nanotubes are better dispersed in the matrix, providing nanocomposites with better mechanical properties than those reinforced with pristine and silanized MWCNT. On the other hand, the glass transition temperature of the nanocomposite with 0.05 wt % MWCNT‐GLYMO increased by 14 °C compared to the neat epoxy resin, suggesting a strong matrix–nanotube adhesion. The functionalization of nanotubes using an excess amount of silane can thus favor the formation of an organosiloxane coating on the MWCNT, preventing its dispersion and contributing to poor mechanical properties of epoxy nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44245.  相似文献   

2.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

3.
In this study, the effect of diamine molecular structure, attached to the multiwalled carbon nanotubes (MWCNTs), on the interfacial interactions of the MWCNTs and the epoxy matrix was studied. Pristine MWCNTs were successfully functionalized with multiple aliphatic and aromatic diamines. It has been found that, compared to aliphatic molecules, aromatic diamines can yield higher functionalization degree, due to higher activity and longer half‐life of aromatic intermediates. However, at the same functionalization degree, the aliphatic ligands were more successful in reacting with epoxy chains and forming covalent bonds between the MWCNTs and the matrix. Considerable improvements were achieved in the mechanical properties of functionalized MWCNT‐reinforced epoxy composites in comparison with the pristine MWCNT‐reinforced composites. Fractography observations revealed distinct differences in the failure modes of reinforced composites after functionalization of the MWCNTs with diamines. POLYM. ENG. SCI., 59:1905–1910, 2019. © 2019 Society of Plastics Engineers  相似文献   

4.
The surface of multi wall carbon nanotubes (MWCNTs) was first covalently functionalized with oleyl amine and then non-covalently wrapped with polycarbosilane (PCS). The hybrid functional groups were chosen to introduce different features in the MWCNTs properties. For covalent functionalization a long chain unsaturated aliphatic amine was used to simultaneously achieve the dissociation of MWCNT bundles along with the dispersion and interaction with the host matrix using the amide functionality and double bond. On the other hand, a thermally stable polymer was selected which can interact with both resin and glass fabric to promote interfacial adhesion. This hybrid doubly modified MWCNT is thus possesses duel advantages in glass fiber based epoxy composite. The pristine, covalent, noncovalent and covalent-noncovalent doubly modified MWCNT systems were used to study the viscoelastic behavior and interactions of functionalized MWCNTs in the matrix above and below the glass transition temperature of the matrix. The PCS coating on the MWCNTs is amorphous and thermally insulating whereas the nanotube is highly graphitized and thermally conducting. This contrasting behavior provides us to insight into the temperature dependant resin microstructure and curing thermodynamics of epoxy resin in the presence of MWCNTs.  相似文献   

5.
Polymer/carbon nanotube nanocomposites have attracted high interest for a wide spectrum of applications, including antistatic packaging used to protect electronic devices against electrostatic discharge. Polytrimethylene terephthalate (PTT)/maleic-anhydride-grafted PTT (PTT-g-MA)/acrylonitrile butadiene styrene (ABS) blend-based multiwall carbon nanotubes (MWCNTs) nanocomposites were prepared through extrusion. It was conducted chemical functionalization on the MWCNTs by oxidation using nitric acid to introduce functional groups. The effect of the amount (0.5 or 1.0 wt%) and functionalization of MWCNTs on the nanocomposites was investigated. Despite the poor barrier properties of PTT/PTT-g-MA/ABS/MWCNT nanocomposites due to the presence of voids confirmed by scanning electron microscopy (SEM), the nanocomposites with functionalized MWCNT (MWCNTf) showed excellent barrier properties, indicating that the functionalization process improved the interaction between the MWCNTs and the matrix. The addition of MWCNTs into PTT/PTT-g-MA/ABS blend decreased the electrical resistivity by eight orders of magnitude. The use of MWCNTf may still disrupt the electrical network pathway and slightly decreasing the electrical resistivity, but the nanocomposites present the desired properties required for antistatic packaging.  相似文献   

6.
Carbon nanofillers like nanotubes and nanofibers have been used to reinforce various epoxy systems. The incorporation of carbon nanofillers into a thermosetting epoxy system enhanced the thermal and mechanical properties of the epoxy system. The best performance of an epoxy nanocomposite system with carbon nanofillers would be resulted from the homogeneous dispersion of the nanofillers and strong interfacial adhesion between the epoxy matrix and the nanofillers. Therefore, amine‐functionalization of carbon nanofibers (CNFs) and multiwalled carbon nanotubes (MWNTs) was carried out via treating them with 4‐aminobenzoic acid in polyphosphoric acid. FTIR spectroscopy, XPS, TGA, and FE‐SEM analyses confirmed that the functionalization was successful. Curing behavior and thermo‐physical properties of the nanocomposites comprising the pristine or functionalized carbon nanofillers were investigated and compared with each other. Fractured surfaces of the nanocomposites were investigated by FE‐SEM. The functionalized MWNTs induced stronger interfacial adhesion than the functionalized CNFs and resulted in considerable improvement in the physical properties of the epoxy nanocomposites. POLYM. COMPOS., 31:1449–1456, 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
A number of batch polymerizations were performed to study the effect of multi‐walled carbon nanotubes (MWCNTs) on the properties of PMMA/MWCNTs nanocomposites. To improve the dispersion of nanotubes in PMMA matrix, MWCNTs were functionalized with methacrylate groups via a four‐step modification process and the modified nanoparticles were used to synthesize the nanocomposites. The prepared samples were characterized by Raman spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, differential scanning calorimetry, gel permeation chromatography, UV–visible, and TEM techniques. According to the results, modified nanotubes improved thermal and mechanical properties better than the pristine MWCNTs. The main improvement in the mechanical and thermophysical properties was achieved for the nanocomposite containing 0.5 wt% of MWCNTs. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
Carbon nanotubes (CNTs) based polymer nanocomposites hold the promise of delivering exceptional mechanical properties and multifunctional characteristics. However, the realization of exceptional properties of CNT based nanocomposites is dependent on CNT dispersion and CNT‐matrix adhesion. To this end, we modified MWCNTs by Prato reaction to yield aromatic (phenyl and 2‐hydroxy‐4‐methoxyphenyl) substituted pyrrolidine functionalized CNTs (fCNT1 and fCNT2) and aliphatic (2‐ethylbutyl and n‐octyl) substituted pyrrolidine functionalized CNTs (fCNT3 and fCNT4). The functionalization of CNTs was established by Thermogravimetric analysis (TGA), Raman Spectroscopy, and XPS techniques. Optical micrographs of fCNT epoxy mixture showed smaller aggregates compared to pristine CNT epoxy mixture. A comparison of the tensile results and onset decomposition temperature of fCNT/epoxy nanocomposite showed that aliphatic substituted pyrrolidine fCNT epoxy nanocomposites have higher onset decomposition temperature and higher tensile toughness than aromatic substituted pyrrolidine fCNT epoxy nanocomposites, which is consistent with the dispersion results of fCNTs in the epoxy matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42284.  相似文献   

9.
Multi‐walled carbon nanotubes (MWCNTs), surface‐treated via chemical functionalization, i.e., oxidation and amidation, were used to reinforce diglycidylether of bisphenol F (DGEBF) epoxy resin. The effects of the functionalization on the dispersion stability, rheological properties, and fracture toughness of DGEBF/MWCNT composites were investigated. The dispersion homogeneity of the MWCNTs in the epoxy matrix improved after functionalization. In addition, isothermal rheology measurements revealed that the DGEBF/dodecyl amine‐functionalized MWCNT (D‐MWCNT) composite had a longer gel time and higher activation energy of cross‐linking than the DGEBF/acid‐treated MWCNT (A‐MWCNT) composite. The fracture toughness of the former was also significantly higher than that of the latter; this resulted from the relatively high dispersion stability of the D‐MWCNTs in the epoxy matrix, owing to the presence of alkyl groups on the D‐MWCNT surface. POLYM. ENG. SCI., 55:2676–2682, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
In this paper, γ‐ray radiation technique was utilized to simply functionalize multi‐walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs (MWCNTs‐Am) was proven and the physicochemical properties of MWCNTs before and after radiation grafting modifications were characterized using FT‐IR, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated that the γ‐ray radiation had the visible effects on the surface properties of MWCNTs. The effects of various functionalized MWCNTs on morphological, thermal, and mechanical properties of an epoxy‐based nanocomposite system were investigated. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy‐based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT‐Am showed 13.0% increase in tensile strength, 20.0% increase in tensile modulus, and 24.1% increase in thermal decomposition temperature. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

11.
The effects of functionalized multi‐walled carbon nanotubes (MWCNTs) on thermal and chemorheological behaviors of an epoxy‐based nanocomposite system were investigated. Chemical functionalization of MWCNTs by acid modification (A‐MWCNTs) and chemical amidation (D‐MWCNTs) was confirmed using Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found that the D‐MWCNTs had a significant effect on the chemorheological behaviors of the epoxy‐based nanocomposite. Compared to the epoxy/A‐MWCNT nanocomposite, the epoxy/D‐MWCNTs nanocomposite showed a significant increase in gel time, as obtained from isothermal rheology measurements. Also, the storage modulus of the diglycidylether of bisphenol F (DGEBF)/D‐MWCNTs nanocomposite was higher than that of the DGEBF/D‐MWCNTs nanocomposite and gradually increased with an increase of frequency. This could be interpreted by the relatively strongly interconnected structure of the D‐MWCNTs in the DGEBF epoxy resin, which arises from the functionalized alkyl groups of the D‐MWCNTs in dispersion phases with the DGEBF epoxy resin. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
We describe the preparation, characterization and physical properties of multiwalled carbon nanotube (MWCNT)‐filled epoxidized natural rubber (ENR) composites. To ensure better dispersion in the elastomer matrix, the MWCNTs were initially subjected to aminopropyltriethoxysilane (APS) treatment to bind amine functional groups (?NH2) on the nanotube surface. Successful grafting of APS on the MWCNT surface through Si–O–C linkages was confirmed using Fourier transform infrared spectroscopy. Grafting of APS on the MWCNT surface was further corroborated using elemental analysis. ENR nanocomposites with various filler loadings were prepared by melt compounding to generate pristine and APS‐modified MWCNT‐filled elastomeric systems. Furthermore, we determined the effects of various filler loadings on the rheometric, mechanical, electrical and thermal degradation properties of the resultant composite materials. Rheometric cure characterization revealed that the torque difference increased with pristine MWCNT loading compared to the gum system, and this effect was more pronounced when silane‐functionalized MWCNTs were loaded, indicating that this effect was due to an increase in polymer–carbon nanotube interactions in the MWCNT‐loaded materials. Loading of silane‐functionalized MWCNTs in the ENR matrix resulted in a significant improvement in the mechanical, electrical and thermal degradation properties of the composite materials, when compared to gum or pristine MWCNT‐loaded materials.© 2013 Society of Chemical Industry  相似文献   

13.
Amino‐functionalization of multiwalled carbon nanotubes (MWCNTs) was carried out by grafting triethylenetetramine (TETA) on the surfaces of MWCNTs through the acid–thionyl chloride way. The amino‐functionalized MWCNTs show improved compatibility with epoxy resin and, as a result, more homogenous dispersion in the matrix. The mechanical, optical, and thermal properties of the amino‐functionalized MWCNT/epoxy composites were also investigated. It was found that introducing the amino‐functionalized MWCNTs into epoxy resin greatly increased the charpy impact strength, glass transition temperature, and initial decomposing temperature of cured epoxy resin. In addition, introducing unfunctionalized MWCNTs into epoxy resin was found greatly depressing the light transmission properties, which would affirmatively confine the application of the MWCNTs/epoxy composites in the future, while much higher light transmittance than that of unfunctionalized MWCNTs/epoxy composites was found for amino‐functionalized MWCNTs/epoxy composites. SEM of the impact cross section and TEM of ultrathin film of the amino‐functionalized MWCNTs/epoxy composites showed that the amino‐functionalized MWCNTs were wetted well by epoxy matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 97–104, 2006  相似文献   

14.
Poly(methyl methacrylate) (PMMA) multi-walled carbon nanotubes (MWCNTs) nanocomposites were synthesized by several methods using both pristine and surface functionalized carbon nanotubes (CNTs). Fourier transform infrared (FTIR) spectroscopy was used to characterize the presence and types of functional groups in functionalized MWCNTs, while the dispersion of MWCNTs in PMMA was characterized using scanning electron microscopy (SEM). The prepared nanocomposites were foamed using carbon dioxide (CO2) as the foaming agent. The cell morphology was observed by SEM, and the cell size and cell density were calculated via image analysis. It was found that both the synthesis methods and CNTs surface functionalization affect the MWCNTs dispersion in the polymer matrix, which in turn profoundly influences the cell nucleation mechanism and cell morphology. The MWCNTs are efficient heterogeneous nucleation agents leading to increased cell density at low particle concentrations. A mixed mode of nucleation mechanism was observed in nanocomposite foams in which polymer rich and particle rich region co-exist due to insufficient particle dispersion. This leads to a bimodal cell size distribution. Uniform dispersion of MWCNTs can be achieved via synergistic combination of improving synthesis methodology and CNTs surface functionalization. Foams from these nanocomposites exhibit single modal cell size distribution and remarkably increased cell density and reduced cell size. An increase in cell density of ∼70 times and reduction of cell size of ∼80% was observed in nanocomposite foam with 1% MWCNTs.  相似文献   

15.
The effect of the functionalization of multi-wall carbon nanotubes (MWCNTs) on the structure, the mechanical and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs or COOH-functionalized carbon nanotubes (MWCNT–COOH) were prepared and characterized. Dynamic-mechanical thermal analysis shows that the storage modulus increases with the addition of MWCNTs, whereas a constant value or even a weak reduction was observed for functionalized nanotubes. Two phases were suggested in the composites with MWCNT–COOH, both by dynamic-mechanical properties and by water transport. Chemical functionalization of MWCNTs increases the compatibility with the epoxy matrix due to the formation of an interface with stronger interconnections. This, in turn, causes a significant decrease in the electrical conductivity of this type of composite with respect to the untreated MWCNTs which can be explained in terms of tunnelling resistance between interacting nanotubes.  相似文献   

16.
In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in an epoxy matrix were prepared by in situ polymerization. A high energy sonication was employed as the dispersion method, without the aid of solvents in the process. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has shown a synergic potential of increasing mechanical properties and electrical conductivity. Two different montmorillonite clays were used: a natural (MMT‐Na+) and an organoclay (MMT‐30B). The nanocomposites had their electrical conductivity (σ) and dielectric constant (εr) measured by impedance spectroscopy. The sharp increase in electrical conductivity was found between 0.10 and 0.25 wt% of the MWCNTs. Transmission electron microscopy (TEM) of the samples showed a lower tendency of MWCNT segregation on the MMT‐30B clay surface, which is connected to intercalation/exfoliation in the matrix, that generates less free volume available for MWCNTs in the epoxy matrix. Data from electrical measurement showed that simultaneously adding organoclay reduces the electrical conduction in the nanocomposite. Moreover, conductivity and permittivity dispersion in low frequency suggest agglomeration of nanotubes surrounding the natural clay (MMT‐Na+) particles, which is confirmed by TEM. POLYM. COMPOS., 37:1603–1611, 2016. © 2014 Society of Plastics Engineers  相似文献   

17.
Multiwalled carbon nanotubes (MWCNTs) were functionalized through “Friedel‐Craft” acylation with 1,3,5‐Benzenetricarboxylic acid (BTC) in mild polyphosphoric acid (PPA)/ phosphorus pentoxide (P2O5)/phosphoric acid (PA) medium at 130°C. The high‐resolution transmission electron microscopy, Raman spectra, and X‐ray photoelectron spectra (XPS) were used to characterize the surface microstructure nature of functionalized MWCNTs in optimum PPA/P2O5/PA medium. The thermostability of functionalized MWCNTs was characterized by thermogravimetric analysis. The maximum rate of weight loss temperature increased as compared with pristine MWCNTs. The dispersion properties of MWCNTs and the flexural properties of the MWCNTs/epoxy composites affected by MWCNTs functionalization are investigated. It is demonstrated that the functionalized MWCNTs exhibit much better dispersability than pristine MWCNTs. The attached BTC molecules arising from the functionalization effectively improved interfacial adhesion between the epoxy resin and functionalized MWCNTs through covalent bonds, resulting in improved flexural properties compared with those without functionalization. POLYM. COMPOS., 35:1275–1284, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
The objective of this study is to investigate the effects of carbon nanotube (CNT) content, surface modification, and silane cross‐linking on mechanical and electrical properties of linear low‐density polyethylene/multiwall CNT nanocomposites. CNTs were functionalized by vinyltriethoxysilane to incorporate the ─O─C2H5 functional groups and were melt‐blended with polyethylene. Silane‐grafted polyethylene was then moisture cross‐linked. Silanization of CNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and EDX analysis. Hot‐set test results showed that silane cross‐linking of polyethylene and incorporation of modified CNTs into polyethylene led to an increase in cross‐linking density and the number of entanglements resulting in a decrease in elongation. It was found that the addition of pristine multiwall carbon nanotubes (MWCNTs) and functionalized MWCNTs does not affect silane cross‐linking density. Silane modification resulted in a stronger adhesion of the silane cross‐linked LLDPE to silanized MWCNTs according to scanning electron microscopy micrographs. Additionally, the electrical tests revealed that the silane modification of CNTs results in an improvement in electrical properties of nanocomposites, while silane cross‐linking will not have an effect on electrical properties. Rheological properties of MWCNT/LLDPE nanocomposites have been studied thoroughly and have been discussed in this study. Moreover, according to TGA test results, modification of the MWCNTs led to a better dispersion of them in the LLDPE matrix and consequently resulted in an improvement in thermal properties of the nanocomposites. Crystallinity and melting properties of the nanocomposites have been evaluated in detail using DSC analysis. J. VINYL ADDIT. TECHNOL., 26:113–126, 2020. © 2019 Society of Plastics Engineers  相似文献   

19.
A microemulsion polymerization method was used to achieve better compatibility between polystyrene (PS)/multiwalled carbon nanotubes (MWCNTs) nanocomposites and the host PS matrix to form films with excellent electrical and thermal properties. The films were prepared by embedding the PS/MWCNTs nanocomposite into the PS matrix. The MWCNTs were functionalized with PS nanoparticles to avoid the phase separation problem between the filler and host matrix and to enhance the good dispersibility of MWCNTs in the PS host matrix. The confirmation of the synthesis was analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and Raman spectroscopy. The variation effect of the PS‐linking density on the MWCNT was revealed by scanning electron microscopy and transmission electron microscopy. An enhancement of the thermal and mechanical properties was revealed by thermal gravimetric analysis, differential scanning colorimetric analysis, and dynamic mechanical analysis. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Foaming behavior of poly(methyl methacrylate) (PMMA)/multi‐walled carbon nanotubes (MWCNTs) nanocomposites and thermally‐insulating, electrical, and mechanical properties of the nanocomposite foams are investigated. PMMA/MWCNT nanocomposites containing various amounts of MWCNTs are first prepared by combining solution and melt blending methods, and then foamed using CO2. The foaming temperature and MWCNT content are varied for regulating the structure of PMMA/MWCNT nanocomposite foams. The electrical conductivity measurement results show that MWCNTs have little effect on the electrical conductivity of foams with large expansion ratio. Thermal conductivities of both solid and foamed PMMA/MWCNT nanocomposites are measured to evaluate their thermally insulating properties. The gas conduction, solid conduction, and thermal radiation of the foams are calculated for clarifying the effects of cellular structure and MWCNT content on thermal insulation properties. The result demonstrates that MWCNTs endowed foams with enhanced thermal insulation performance by blocking thermal radiation. Moreover, the compressive testing shows that MWCNTs improve the compressive strength and rigidity of foams. This research is essential for optimizing environmentally friendly thermal insulation nanocomposite foams with enhanced thermal‐insulation and compressive mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号