首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, the feasibility of the anaerobic co-digestion of a mixed industrial sludge with municipal solid wastes (MSW) was investigated in three simulated anaerobic landfilling bioreactors during a 150-day period. All of the reactors were operated with leachate recirculation. One of them was loaded only with MSW (control reactor); the second reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:1 (based on dry solid) (Run 1); the third reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:2 (based on dry solid) (Run 2). The VFA concentrations decreased significantly in Run 1 and Run 2 reactors at the end of 150 days. The pH values were higher in Run 1 and Run 2 reactors compared to control reactor. The differences between leachate characteristics, the biodegradation and the bioefficiency of the reactors were compared. The NH(4)-N concentrations released to leachate from mixed sludge in Run 1 and Run 2 reactors were lower than that of control reactor. The BOD(5)/COD ratios in Run 1 and Run 2 reactors were lower than that of control reactor at the end of 150 days. Cumulative methane gas productions and methane percentages were higher in Run 1 and Run 2 reactors. Reductions in waste quantity, carbon percentage and settlement of the waste were better in Run 1 and Run 2 reactors compared to control reactor at the end of 150 days. Furthermore, TN and TP removals in waste were higher in reactors containing industrial sludge compared to control. The toxicity test results showed that toxicity was observed in reactors containing industrial mixed sludge.  相似文献   

2.
In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation.  相似文献   

3.
The Solid and Hazardous Waste Research Laboratory is one of six laboratories in the Environmental Protection Agency (EPA), National Environmental Research Center at Cincinnati, Ohio. The laboratory is responsible for research into new and improved systems of solid and hazardous waste management, development of technology, determination of environmental effects, and collection of data necessary for the establishment of processing and disposal guidelines. In the past, the laboratory concentrated on problems associated with municipal solid waste; but recently the emphasis has shifted, and present efforts are directed primarily toward the problem of industrial hazardous waste disposal on land. Under the solid waste program, investigations were initiated on the migration of municipal landfill leachate and leachate containment with synthetic liners. These studies have been underway for more than a year, but they will not be discussed here because of the present emphasis on industrial hazardous waste problems. Although none of our research projects is concerned specifically with the disposal of residues and sorbants generated during cleanup of hazardous material spills, much of the forthcoming information will be applicable to spill-cleanup problems. The extramural projects and program areas described here involve many activities that could be useful in spill problems.  相似文献   

4.
Landfilled municipal solid waste can be treated by introducing leachate into the waste matrix. Increasing attention is being given to landfill leachate recirculation as a means for in situ leachate treatment and landfill stabilization. Landfills with leachate recirculation may be operated as municipal solid waste bioreactor treatment system rather than as a conventional waste dumping sites. In order to study the impact of various leachate recirculation regimes on municipal solid waste degradation, two landfill-simulating reactors, one with leachate recycle and one without, were constructed and placed at a constant room temperature (34 degrees C). Both reactors were filled with a municipal solid waste mixture representing the typical solid waste composition determined for the city of Istanbul. For the purpose of this experiment, leachate recirculation volume and frequency were changed periodically. This research showed that increased frequency of leachate recirculation accelerates the stabilization rate of waste matrix. About 2l of recirculated leachate and four times per week recirculation strategy were found to provide the highest degree of waste stabilization. Additionally, this research confirmed that leachate recirculation is a very feasible way for in situ leachate treatment.  相似文献   

5.
Leachate and solid waste samples from aerobic and anaerobic simulated landfill reactors operated with and without leachate recirculation were characterized in terms of metals such as Fe, Ca, K, Na, Cd, Cr, Cu, Pb, Ni, and Zn. Metal concentrations of aerobic landfill reactor leachate samples are always below the regulation limits. The higher concentrations in anaerobic landfill leachate samples decreased to regulation limits after the landfill becomes methanogenic. The effect of leachate recirculation is determined in anaerobic landfills more clearly than aerobic landfills. Metal precipitation resulted in a decrease in leachate metal content and an increase in solid waste metal content as expected. Result of the study show that the metal content of landfill leachate samples is not a major concern for both aerobic and anaerobic landfills.  相似文献   

6.
The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.  相似文献   

7.
Incineration of municipal solid wastes (MSW) is the main method of waste management in Taiwan. Although the incineration of MSW processes the solid wastes at 850-950 degrees C and destroys most of the organics, the content of incineration ashes is still a problem for landfill. Moreover, acid precipitation is much worse than before in Taiwan, especially in the northern areas. For instance, the occurrence probabilities of acid precipitation measured from 1991 to 1998 in Taipei increase from 73% to 85%. Therefore, it is more important to get a series of data that will help explore the influence of acid precipitation during disposal on characterization of pollutants than to analyze the ash properties after the incinerators have been constructed and regularly used. In this investigation, the disposal site of incineration ashes is simulated in laboratory by test columns. An irrigation experiment is taken to simulate the acid precipitation at room temperature. In order to explore the exact influence on leachate quality of the main chemical composition of acid precipitation, columns are migrated with different concentrations of sulfate in acid precipitation. This investigation showed that the sulfate concentration of acid precipitation has an increasing effect on the accumulative release of heavy metals, such as Zn, Pb and Cu, from leachate. The sulfate concentration of acid precipitation, however, will not influence the trend of chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)) and total organic carbon (TOC) in the leachate release.  相似文献   

8.
《工程(英文)》2018,4(4):574-580
Organic solid and liquid wastes contain large amounts of energy, nutrients, and water, and should not be perceived as merely waste. Recycling, composting, and combustion of non-recyclables have been practiced for decades to capture the energy and values from municipal solid wastes. Treatment and disposal have been the primary management strategy for wastewater. As new technologies are emerging, alternative options for the utilization of both solid wastes and wastewater have become available. Considering the complexity of the chemical, physical, and biological properties of these wastes, multiple technologies may be required to maximize the energy and value recovery from the wastes. For this purpose, biorefining tends to be an appropriate approach to completely utilize the energy and value available in wastes. Research has demonstrated that non-recyclable waste materials and bio-solids can be converted into usable heat, electricity, fuel, and chemicals through a variety of processes, and the liquid waste streams have the potential to support crop and algae growth and provide other energy recovery and food production options. In this paper, we propose new biorefining schemes aimed at organic solid and liquid wastes from municipal sources, food and biological processing plants, and animal production facilities. Four new breakthrough technologies—namely, vacuum-assisted thermophilic anaerobic digestion, extended aquaponics, oily wastes to biodiesel via glycerolysis, and microwave-assisted thermochemical conversion—can be incorporated into the biorefining schemes, thereby enabling the complete utilization of those wastes for the production of chemicals, fertilizer, energy (biogas, syngas, biodiesel, and bio-oil), foods, and feeds, and resulting in clean water and a significant reduction in pollutant emissions.  相似文献   

9.
Four simulated landfill anaerobic bioreactors were performed to investigate the influence of alkalinity on the anaerobic treatment of municipal solid waste (MSW). Leachate was recirculated in all the four reactors. One reactor was operated without alkalinization. The other three were operated under alkaline conditions. Na(2)CO(3), NaHCO(3) and NaOH were added to leachate in the second, third and fourth reactor, respectively. Experimental results showed that CO(3)(2-) and HCO(3)(-) addition had a more pronounced effect on MSW stabilization while the effect of addition of OH(-) was weak. The concentration of COD, BOD(5), total nitrogen (TN), ammonium nitrogen (NH(4)(+)-N) and nitrate nitrogen (NO(3)(-)-N), etc. in leachate significantly reduced in four reactors. The removal efficiencies were 90.56%, 92.21%, 92.74% and 90.29% for COD, 66.45%, 72.38%, 68.62% and 68.44% for NO(3)(-)-N, and 96.5%, 98.75%, 97.75% and 98% for NO(2)(-)-N in the control, Na(2)CO(3), NaHCO(3) and OH(-) added reactors, respectively. The final BOD(5)/COD was 0.262, 0.104, 0.124, and 0.143, and pH was 7.13, 7.28, 7.42, and 7.24 for control, Na(2)CO(3) added, NaHCO(3) added, and OH(-) added reactor, respectively. Therefore, alkalinity addition had positive effect on the stabilization of MSW.  相似文献   

10.
High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between 10(6) and 10(8) cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO(3)(-)-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH(4)(+)-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.  相似文献   

11.
With increasing use of municipal solid waste landfills for waste disposal, the leachate generated has become a serious environmental concern. Therefore, it is important to set up simple and accurate methods for monitoring leachate toxicity. In the present study, the physiological and genetic toxicity of the leachate, generated from Xingou Municipal Landfill in China, were investigated with Triticum aestivum (wheat) bioassay. The results indicate that the lower leachate concentrations stimulated the germination, growth and cell division, and did not induce obvious increase in micronucleus (MN) frequency in root tips; while the higher concentrations inhibited the processes, and significantly augmented the MN frequency in a concentration- and time-dependent manner. In addition, pycnotic cells (PNC) and sister chromatid exchange (SCE) occurred in root tips at all leachate concentrations tested, and the frequencies had positive relation with the treatment concentration and time. The results imply that components of leachate from the landfill may be genotoxic in plant cells, and exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also suggest that the wheat bioassay is efficient, simple and reproducible in monitoring genotoxicity of the leachate.  相似文献   

12.
Municipal solid waste (MSW) incinerator (MSWI) bottom ash and fly ash were used as landfill cover or were co-disposed with MSW to measure their potential metal-releasing and acid-neutralizing capacity (ANC) in landfill sites. Five lysimeters (height 1.2m, diameter 0.2m), simulating landfill conditions, were used in the experiment. Four contained either bottom ash (BA) or fly ash (FA) with BA:MSW ratios of 100 and 200 g L(-1) and FA:MSW ratios of 10 and 20 g L(-1), and the fifth was the control, which contained no ash. The lysimeters were arranged so as to contain four layers, with BA or FA placed on top of MSW within each layer. Each lysimeter was recirculated with 100mL leachate using peristaltic pumps, and 100mL of the leachate was collected weekly to measure the soluble metal concentrations. The results showed that the concentrations of soluble alkali metals measured in the leachate were in the order Ca>K>Na>Mg. In addition, the concentrations of soluble alkali metals of Ca and K collected from the lysimeters containing FA were found to be higher than the concentrations from the lysimeters containing BA. The concentrations of heavy metals (Cd, Cr, Cu, Ni, and Zn) were found to be <1 mg L(-1) except for Pb, which reached 2 mg L(-1). These results suggest that for alkali metals there might be an ANC consistent with the results of an acid titration curve, which would provide suitable conditions for anaerobic digestion of the MSW in the landfill. Furthermore, heavy metals and trace metals were found in concentrations, which were too low to exert inhibitory effects on anaerobic digestion, and thus they could serve as micronutrients to exert beneficial rather than detrimental effects on landfill biostabilization.  相似文献   

13.
In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.  相似文献   

14.
The treatment of leachate from landfills is a major disposal problem for municipal solid waste. The leachate is generally recalcitrant to be treated according to complicated characteristics and high color intensity resulting further threat for environment and human health. In this work, the designed thin gap annular photoreactor with 4-UV lamps in UV/H2O2 process was proposed to decolor and remove chemical oxygen demand (COD) from the landfill leachate for solving this environmental problem. Meanwhile, the operating parameters such as UV dosage, hydrogen peroxide concentration and leachate strength were evaluated. The landfill leachate treated with the maximum dosage of 4-UV lamps and 232.7 mM of hydrogen peroxide concentration achieved 72 and 65% of color and COD removal efficiencies in 300 min. As for less concentrated leachate of 20% strength, 91% of color and 87% of COD were removed within only 120 min. From the experimental results, the UV/H2O2 process in this work was an effective pre-treatment or treatment technology for landfill leachate.  相似文献   

15.
The construction and demolition (C&D) waste generated by the Canadian construction industry accounts for 27 % of the total municipal solid waste disposed in landfills. However, it is evident that over 75 % of what the construction industry generates as waste has a residual value, and therefore could be recycled, salvaged and/or reused. The need for comprehensive and integrated waste management mechanisms, technologies, rating systems and policies is widely recognized. Owing to increasing C&D waste volumes, shortage of landfills and long-term adverse environmental, economic and social impacts of the disposed C&D waste, sustainable C&D waste management is becoming increasingly essential to protect public health and natural ecosystems. This paper proposes a conceptual C&D waste management framework to maximise the 3R (reduce, reuse and recycle) and minimise the disposal of construction waste by implementing sustainable and comprehensive strategy throughout the lifecycle of construction projects. In addition, a life cycle based C&D waste sustainability index is developed. This approach can be used to make decisions related to selection of material, sorting, recycle/reuse and treatment or disposal options for C&D waste.  相似文献   

16.
In order to recover valuable pyrolytic oils, mixed municipal solid waste was pyrolyzed in a fluidized bed reactor. Results showed that liquid products yielded among 38.4–56.5 wt% and separated into water-soluble phases and organic phases. Moisture was concentrated in the water-soluble phases (39.4–57.3 wt%), making them low in carbon content and heating value. On the other hand, the higher carbon content and lower oxygen content of organic phases make their heating value (27.5–32.1 MJ/kg) and quality higher than bio-oils. Water-soluble phases mainly included acids, carboxylics, phenols, and sugars, which could be used as chemical feedstocks and substantial fuel. Organic phases mostly contained aromatics and phenols and could be used as fossil fuels directly or as chemical materials. Heavy metals of Cd and Pb were proved to be poor in both water-soluble phases and organic phases. As for Zn, it was found to be higher in the water-soluble phases at 450 and 550 °C with quartz sand as bed material than that in crude oils. However, Zn content in organic phases was comparable to crude oils. High-aluminum bauxite and attapulgite as bed materials increased heating value of water-soluble phases and organic phases respectively, and both performed well in reducing the Zn content of water-soluble phases. This work proved that it was an operative way to produce valuable pyrolytic oils by pyrolysis of mixed municipal solid waste.  相似文献   

17.
In this study, experiments were conducted to investigate the production of biogas from municipal solid waste (MSW) and domestic sewage by using anaerobic digestion process. The batch type of reactor was operated at room temperature varying from 26 to 36 degrees C with a fixed hydraulic retention time (HRT) of 25 days. The digester was operated at different organic feeding rates of 0.5, 1.0, 2.3, 2.9, 3.5 and 4.3kg of volatile solids (VS)/m(3) of digester slurry per day. Biogas generation was enhanced by the addition of domestic sewage to MSW. The maximum biogas production of 0.36m(3)/kg of VS added per day occurred at the optimum organic feeding rate of 2.9kg of VS/m(3)/day. The maximum reduction of total solids (TS) (87.6%), VS (88.1%) and chemical oxygen demand (COD) (89.3%) occurred at the optimum organic loading rate of 2.9kg of VS/m(3)/day. The quality of biogas produced during anaerobic digestion process was 68-72%.  相似文献   

18.
An estimation of the heavy metal and anion mass-balance was made for municipal solid waste incinerator bottom ash deposited at a construction and industrial waste landfill. The mass-balance was found by comparing the content of metals and anions in the landfill leachate to the metal and anion content in the deposited bottom ash. The discharge of heavy metals ranged from 0.001% for Pb to 0.55% for Cr, which is approximately at the same level as in regular municipal solid waste (MSW) landfills. Landfilled organic material and silicates from construction waste might have contributed to the retention of metals. Chloride, and to a lesser extent sulphate, appeared to be readily released from the landfill. It was estimated that a mass corresponding to 80% of the Cl- and 18% of the SO(4)2- in the bottom ash was discharged annually. Low retention, especially of chloride, may lead to a rapid decline in the discharge of this ion in the future when the landfilling of bottom ash is discontinued.  相似文献   

19.
Solid-waste management, and in particular the disposal of used packaging, is currently the subject of much topical debate. This is driven by both consumer and legislative pressures. Consumers see used packaging as a highly visible element of municipal solid waste, complaining of excessive packaging and low levels of recycling. Legislators, perhaps in pandering to the views expressed by consumer bodies, have been active within the CEC and individual Member States by introducing (or proposing) legislation or similar regulatory tools and targets to facilitate a greater diversion of used packaging from disposal by landfill to alternative solid-waste management practices, in particular recycling, which are widely accepted to have a lower impact on the environment. In this paper the relative environmental profiles of pursuing alternative solid-waste management practices to disposal by landfill are explored, focusing not just on solid waste per se but also on associated considerations of energy consumption and emissions, which are invariably overlooked as factors contributing to the environmental impact of solid-waste management practices.  相似文献   

20.
In situ heavy metal attenuation in landfills under methanogenic conditions   总被引:12,自引:0,他引:12  
The purpose of this research was to determine the fate and behavior of heavy metals co-disposed with municipal waste under methanogenic conditions. Two landfill simulating reactors, one with leachate recirculation and the other without, were operated in a constant room temperature at 32 degrees C. These reactors were filled with shredded and compacted municipal solid waste having a typical solid waste composition of Istanbul region. After the onset of the methanogenic conditions, the selected heavy metals including iron, copper, nickel, cadmium and zinc were added according to the amounts suggested for co-disposal under the directives of the Turkish Hazardous Waste Control Regulations. The results of the experiments indicated that about 90% of all heavy metals were precipitated from the reactors within the first 10 days due to the establishment of highly reducing environment and the formation of sulfide from sulfate reduction which provided heavy metal precipitation. No inhibition to the biological stabilization was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号