首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
原油对丁腈橡胶密封件性能的影响   总被引:1,自引:0,他引:1  
以原油为试验介质,模拟井况研究原油对丁腈橡胶密封件性能的影响。结果表明,在模拟井况条件下,丁腈橡胶密封件出现老化现象,随着浸泡时间的延长,密封件的拉伸强度和扯断伸长率逐渐下降,硬度逐渐增大,老化机理以分子链交联老化反应为主;随着温度的升高,老化速率快速增大;高含水率的原油对丁腈橡胶密封件的性能存在负面影响。  相似文献   

2.
研究丁腈橡胶(NBR)对胎圈胶硫化特性、物理性能、动态力学性能以及粘合性能的影响。结果表明:随着NBR用量的增大,胎圈胶的硫化速率增大,门尼粘度减小,硬度略微增大;老化前,随着NBR用量的增大,胎圈胶的拉伸性能逐渐降低,撕裂强度先减小后增大;老化后,NBR明显延缓了胎圈胶物理性能的降低,特别是在抗撕裂性能方面;随着NBR用量的增大,胎圈胶的损耗因子和动态生热增大;NBR的加入能显著提高胎圈胶与胎圈钢丝的粘合性能,NBR用量在20份时粘合性能最佳。  相似文献   

3.
研究了DCP/TAIC并用比对NBR/EVM并用胶硫化特性、物理机械性能和热空气老化性能的影响。结果表明,随着TAIC用量的增大,NBR/EVM硫化胶的拉伸强度和100%定伸应力均逐渐增大,压缩永久变形性能逐渐变好;在TAIC用量为0.4份时,其耐热空气老化性能最差。随着DCP用量的增大,NBR/EVM并用胶的硫化速率和交联密度均逐渐增大,其硫化胶的硬度、100%定伸应力和拉伸强度先增大后减小,扯断伸长率逐渐减小,压缩永久变形性能逐渐变好;耐热空气老化性能基本不变。综合分析,在DCP/TAIC并用比为1.4/0.7左右时,NBR/EVM并用胶的性能最好。  相似文献   

4.
研究了在丁腈橡胶(NBR)与丙烯酸酯橡胶(ACM)共混胶中ACM预硫化时间对共混胶性能的影响。结果表明NBR硫化速度远快于ACM,ACM预硫化工艺能有效提高其硫化程度以及与NBR相的硫化同步性。随着ACM预硫化时间的增加,共混硫化胶拉断强度、扯断伸长率均先增大后减小,100%定伸强度逐渐增大,共混硫化胶耐热空气老化性能先提高后降低,耐油性能逐渐提升。随着ACM预硫化时间的增加,共混胶中ACM相交联密度逐渐增大;热空气老化后,共混胶中ACM相交联密度变化率逐渐缩小;ACM预硫化工艺对共混胶中NBR相交联密度几乎无影响。ACM预硫化工艺可以改善其在NBR中的分散效果。  相似文献   

5.
在低温过氧化物硫化剂3M作用下,研究了NBR/EVM(EVM800HV和EVM500HV)共混比对硫化胶硫化特性、物理机械性能、热空气老化性能和热油老化性能的影响。结果表明,随着EVM用量的增加,NBR/EVM硫化胶的交联密度逐渐减小,硫化速率逐渐变快,100%定伸应力逐渐增大,拉断伸长率逐渐减小,与NBR/EVM500HV硫化胶相比,NBR/EVM800HV硫化胶的100%定伸应力较大,且增大更显著,拉断伸长率较小,且减小更明显;硫化胶的热稳定性变好,且NBR/EVM800HV的热稳定性比NBR/EVM500HV的好;随着EVM500HV用量的增加,NBR/EVM500HV硫化胶的耐油性变差;随着EVM800HV用量的增加,NBR/EVM800HV硫化胶的耐油性变好。  相似文献   

6.
研究了在丁腈橡胶(NBR)与丙烯酸酯橡胶(ACM)共混胶中NBR预硫化时间对共混胶性能的影响。结果表明在此硫化体系下ACM硫化速度远快于NBR,NBR预硫化工艺能有效提高其硫化程度以及与ACM相的硫化同步性,但预硫化时间过长会导致其门尼黏度增大,不利于两相共混。随着NBR预硫化时间的增加,ZnO在预硫化过程中的消耗量逐渐增加,减小了对共混胶中ACM硫化抑制作用,NBR/ACM共混胶物理机械性能先增大后减小,耐热空气老化性能先增强后降低,耐热油老化性能逐渐提升、随着NBR预硫化时间的增加,NBR相交联密度几乎不变,而ACM相的交联密度随预硫化时间的增加而逐渐变大。  相似文献   

7.
在过氧化物硫化剂DCP作用下,研究了NBR/EVM(EVM800 HV和EVM500 HV)共混比对硫化胶硫化特性、物理机械性能、热空气老化性能和热油老化性能的影响。结果表明,NBR/EVM硫化胶的交联密度随EVM用量增大而逐渐减小。对于NBR/EVM800 HV硫化胶,EVM800 HV用量不超过20份时,其拉伸强度基本不变,在EVM800 HV用量为20~40份时,其拉伸强度随EVM800 HV用量增大逐渐增大,由11.7 MPa增大至15 MPa,明显高于NBR/EVM500 HV硫化胶以及纯NBR硫化胶;100%定伸应力随EVM用量增大而逐渐增大,且NBR/EVM800 HV硫化胶增大更加显著,同时其100%定伸应力高于NBR/EVM500 HV硫化胶。并用EVM之后,NBR/EVM硫化胶的热空气稳定性变好。随着EVM500 HV用量的增大,NBR/EVM500 HV硫化胶的耐油性能逐渐变差;随着EVM800 HV用量的增大,NBR/EVM800 HV硫化胶的耐油性能逐渐变好,且优于NBR/EVM500 HV硫化胶。  相似文献   

8.
黑液/高岭土复合物在丁腈橡胶和丁苯橡胶中的应用研究   总被引:3,自引:2,他引:1  
通过絮凝沉降法制备了一种复合补强剂——黑液/高岭土复合物(CLK),将其分别与丁腈橡胶(NBR)和丁苯橡胶(SBR)共混制备了NBR/CLK与SBR/CLK复合材料。考察了CLK的添加量对橡胶复合材料硫化特性、交联密度、力学性能、热氧老化性能以及热降解性能的影响。结果表明:随着CLK含量的增加,在NBR/CLK复合材料体系中,焦烧时间、正硫化时间和硫化速度指数先增加而后逐渐降低;交联密度和力学性能则逐渐增大;老化性能及热性能没有显著改善。在SBR/CLK复合材料中,焦烧时间、硫化速度指数先增加而后逐渐降低,正硫化时间先减少而后逐渐增加;交联密度和力学性能则逐渐增大;老化性能没有显著改善,但热性能得到了提高。  相似文献   

9.
以甲基丙烯酸镁(MDMA)/白炭黑并用补强丁腈橡胶(NBR),研究了其对NBR力学性能、高温力学性能、老化性能以及耐油性能等的影响。结果表明,增大白炭黑用量,NBR力学性能和耐磨性能逐渐增强,弹性和压缩永久变形降低,高温力学性能、耐老化性能以及耐油性能逐渐增强。  相似文献   

10.
研究了硫化剂DCP(过氧化二异丙苯)用量对丁腈橡胶(NBR)/乙烯-醋酸乙烯酯橡胶(EVM)共混胶的硫化特性、两相交联密度、物理力学性能以及热空气老化性能的影响。结果表明,随着硫化剂DCP用量的增大,NBR/EVM共混胶的硫化速度和交联密度逐渐增大。与老化前相比,经热空气老化后硫化胶的交联密度增大,经125℃热空气老化后硫化胶的交联密度增大速率逐渐变大,且在DCP用量为1.5份时老化后的硫化胶交联密度增大一倍多。随着硫化剂DCP用量的增大,NBR/EVM硫化胶中NBR相的交联密度逐渐增大、EVM相的交联密度微降,在DCP用量为1.5份时两相交联密度相差最大。与老化前相比,经过热空气老化后硫化胶中NBR相的交联密度明显增大,EVM相的交联密度则变化不大。随着硫化剂DCP用量的增大,NBR/EVM硫化胶的拉伸强度基本保持不变,硬度和100%定伸应力均逐渐增大,拉断伸长率和压缩永久变形均逐渐减小。与老化前相比,经70℃、100℃热空气老化后硫化胶的硬度、拉伸强度、100%定伸应力均增大,而拉断伸长率基本保持不变。经125℃热空气老化后硫化胶的100%定伸应力明显变大,拉伸强度和拉断伸长率均明显减小。  相似文献   

11.
The effects of crosslinking densities on mechanical properties of nitrile rubber (NBR) composites before and after thermal oxidative aging are investigated. Tensile strengths of NBR composites are enhanced slightly at the initial aging stage, attributing to moderate increment of crosslinking densities. Continuous decrease with further aging is followed, resulting from over-crosslinking and uneven distribution of crosslinking densities. The digital image correlation method is explored for large-strain deformation measurement by displacement accumulation and establishing strain model, being promising in practical age detection and measurement of mechanical properties in complex environments. Compression sets are gradually increased with aging because of the destruction of the original crosslinking structures. The molecular chains fracture inhibits elastic recoveries of compressive NBR composites and results in residual deformation in thermo-oxidative and compressive environment after unloading. This study provides new ideas for exploring mechanical properties of rubber-based composites before and after thermal oxidative aging.  相似文献   

12.
讨论了在过氧化二异丙苯(DCP)的作用下,氢氧化锂和甲基丙烯酸在混炼过程中原位生成的甲基丙烯酸锂(LiMA)增强丁腈橡胶(NBR)的性能和结构。结果表明,原位生成LiMA对NBR有较明显的增强作用,随着LiMA生成量的增加,NBR硫化胶的邵尔A硬度、100%定伸应力和撕裂强度逐渐增加,拉伸强度和扯断伸长率呈现先上升后下降的趋势;在DCP的作用下,LiMA可显著提高NBR的硫化速率及硫化程度,硫化速率与LiMA生成量呈线性增加关系;随着LiMA生成量的增加,NBR硫化胶的总相对交联密度、离子键相对交联密度增加,而共价键相对交联密度有所下降,说明LiMA改变了NBR的结构。  相似文献   

13.
粘土/NBR纳米复合材料的结构与性能研究   总被引:3,自引:0,他引:3  
采用共絮凝粘土水悬浮液与NBR胶乳共混的方法制备了粘土/NBR纳米复合材料。透射电子显微镜观察表明粘土具有平面取向的纳米分散结构;X光衍射测试表明复合材料中还存在一定量的粘土片层聚集体;随着粘土用量的增大,复合材料的邵尔A型硬度、100%定伸应力、300%定伸应力、拉伸强度和扯断永久变形增大,扯断伸长率变化不大;粘土/NBR纳米复合材料的耐老化性能略优于白炭黑/NBR硫化胶;粘土可提高复合材料的气体阻隔性能,但对复合材料的氧指数影响不大。  相似文献   

14.
丁腈橡胶/聚氯乙烯共混胶   总被引:5,自引:1,他引:4  
探讨了丁腈橡胶(NBR)中的结合丙烯腈质量分数、NBR/聚氯乙烯(PVC)(质量比,下同)、增塑剂邻苯二甲酸二辛酯(DOP)用量、PVC聚合度对NBR/PVC共混胶性能的影响,研究了NBR/低聚合度PVC共混胶的力学性能及加工流动性能。结果表明,随着NBR中结合丙烯腈质量分数的增加,NBR/PVC共混胶的耐油性能明显增强,力学性能也相应有所改善;NBR/PVC为80/20~60/40时.NBR/PVC共混胶的综合性能较好;DOP用量对NBR/PVC共混胶性能的影响不大;聚合度为700的PVC更适合于生产NBR/PVC共混胶,其力学性能、加工流动性能、耐老化性能与德国Bayer公司生产的牌号为Perbunan NT/VC3470B的NBR/PVC共混胶相当。  相似文献   

15.
NBR/PVC热塑性弹性体耐热老化性能研究   总被引:2,自引:0,他引:2  
考察了硫化体系、PVC聚合度、DOP用量、抗氧剂种类及用量对丁腈橡胶/聚氯乙烯(NBR/PVC)热塑性弹性体(TPE)的耐热老化性能的影响。试验结果表明:NBR/PVC:的质量比为70:30时,酚醛树脂硫化体系制备的TPE的耐热老化性能最好;增加PV(:的聚合度,TPE的耐热老化性能提高;DOP用量越大。TPE的耐热老化性能越差;抗氧剂2246对TPE的耐热老化性能最好,其最佳用量为2.0份。  相似文献   

16.
采用熔融共混工艺制备了氢化丁腈橡胶(HNBR)/超细全硫化粉末丁腈橡胶(UFPNBR)共混物,研究了共混物相态结构、动态力学性能、力学性能及老化性能,并与HNBR/NBR共混物作了对比。透射电镜观察表明:在HNBR/UFPNBR体系中,HNBR容易形成连续相,UFPNBR为分散相;在HNBR/NBR体系中容易形成双连续相结构。DMA动态力学性能分析表明:2种共混物都只有一个tanδ峰,且相容性较好。HNBR/UFPNBR共混物在玻璃化转变区的tanδ峰值逐渐降低,而HNBR/NBR体系的tanδ峰值先减小后增大。加入适量的UFPNBR能降低HNBR/UFPNBR共混物的压缩永久变形;与常规共混胶相比,HNBR/UFPNBR具有低脆性温度和良好的耐老化性能,但力学性能略低。  相似文献   

17.
紫外老化对聚苯乙烯泡沫性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
姚培培  李琛  肖生苓 《化工学报》2014,65(11):4620-4626
采用紫外加速老化方法,研究聚苯乙烯泡沫(EPS)在受到紫外老化后其外观和缓冲性能的变化规律,分析材料内部结构的变化.结果表明,随着加速紫外老化时间的延长,EPS分子链上产生某种显色基团,导致试样表面颜色变黄,EPS的最小缓冲系数值增大,缓冲效率降低;且随老化时间的增加,EPS分子量降低,分子量分布由2.13增大到3.76;分子结构中C元素含量减少,O元素含量逐渐增加,紫外线照射导致EPS表面受到激发并在水和热的共同作用下发生表面氧化,生成C O键、C-OH键等新的官能团;加速老化使EPS结构中大分子断链,化学键重组,导致力学性能下降.研究EPS材料的老化行为是推断其使用寿命和环境的基本依据,为EPS衬垫在运输包装过程中的合理应用提供参考依据.  相似文献   

18.
探究了在有效硫化体系下,聚醚型混炼型聚氨酯橡胶(MPU)与丁腈橡胶(NBR)并用比对共混胶性能的影响。研究表明,NBR的加入使得共混胶硫化速度变快,随着NBR份数的增加,拉断强度和扯断伸长率不断下降,表观交联密度先减小后增大,不同伸长率下的定伸应力呈现不同的变化规律。共混胶耐热空气老化性能和耐热油老化性能优异,在80℃高温拉伸中,MPU的拉断强度折损率要高于NBR。在动态力学性能研究中发现,20份NBR的加入使得共混胶动态生热明显增大。  相似文献   

19.
Nitrile rubber (NBR) is commonly used as a stator rubber for screw pumps because of its excellent mechanical properties. However, under high-temperature conditions, using NBR for long-term operations is difficult, since it is highly susceptible to a thermal-oxidative aging phenomenon that leads to its failure. In this study, the thermal-oxidative aging behavior of graphene and graphene oxide (GO) in an NBR composite system was investigated using simulated molecular dynamics at 298 K and 348 K. The results showed that Young's moduli of graphene/NBR and GO/NBR composite systems were enhanced by about 33% and 44%, respectively, when the temperature was increased. That is, adding graphene and GO improved the resistance of NBR composites to elastic, bulk, and shear deformation, playing an important role in slowing down the thermal and oxygen aging of rubber. Furthermore, the binding energy, mean square displacement, and free volume fraction of the NBR composite systems were analyzed. The abundant oxygen-containing functional groups in GO increased the intermolecular interaction force between GO and NBR and effectively inhibited the migration of antioxidants 4020. Therefore, GO retards the thermal and oxygen aging of NBR composite systems more effectively.  相似文献   

20.
邓涛  王常春  赵树高 《橡胶工业》2004,51(8):460-463
考察氯化顺丁橡胶(CBR)用量对其与CR,NBR或CPE并用胶的物理性能、耐老化性能和阻燃性能的影响。结果表明,随CBR用量的增大,CBR/CR和CBR/NBR的拉伸强度和拉断伸长率均下降,CBR/CPE的这两项性能均提高;老化或浸油后,3种并用胶的拉伸性能均随CBR用量的增大而下降;随CBR用量的增大,CBR/NBR的阻燃性能改善,CBR/CR和CBR/CPE的阻燃性能下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号