首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We describe a durable microfabricated humidity sensor made of interdigitated rhodium electrodes on a silicon substrate covered with a sensing film of Nafion perfluorosulfonate ionomer. Rhodium electrodes are much less prone to oxidative degradation compared to previously described gold electrode-based sensors. Even with dc excitation, Rh electrode sensors exhibit excellent long-term response stability. It has been found that low-amplitude (+/-1 V) square wave excitation can prolong the usability of gold electrode-based sensors to at least several months; however, this mode of interrogation cannot provide subsecond response times. Rhodium deposition on the microsensors is much more difficult than that of gold. We were able to attain crack-free Rh deposits by adaptation of pulsed electroplating techniques. At excitation voltages of >2 V dc, the Rh sensors respond to moisture with 10 <--> 90% rise and fall times of 30-50 ms. These are the fastest microfabricated water vapor sensors reported to date. We demonstrate applications as a breath monitor. Such sensors should also be of utility in atmospheric eddy measurements. Short-term repeatability is better than 0.6% RSD (n = 7).  相似文献   

2.
Nanostructured Metal Oxide Thin Films for Humidity Sensors   总被引:1,自引:0,他引:1  
Capacitive humidity sensors were fabricated using countersunk interdigitated electrodes coated with amorphous nanostructured TiO2, SiO2, and Al2O3 thin films grown by glancing angle deposition. The capacitive response and response times for each sensor were measured. The sensor utilizing TiO2 exhibited the largest change in capacitance, increasing exponentially from ~ 1 nF to ~ 1muF for an increase in relative humidity from 2% to 92%. Adsorption and desorption response times were measured using flow rates of 2.5 l/min and were between 90 ms and 300 ms for the sensors studied here. A simple model of the capacitive response of the devices has been developed and used to calculate the dielectric constant of the combined system of our films and adsorbed water. The obtained dielectric constants are found to be much higher than bulk or literature values for similar systems.  相似文献   

3.
We report that long-range proton diffusion (>0.3 mm) is generated in monolithic ultraporous manganese oxide nanoarchitectures upon exposure to gas-phase water. The sol-gel-derived ambigel nanoarchitectures, with bicontinuous networks of covalently bonded nanoscale solid and through-connected mesopores, exhibit conductometric sensitivity to humidity as established by impedance spectroscopy. The spectra contain a Warburg feature from which the concentration and diffusion length of the protonic charge carriers are determined. Water adsorbs conformally onto the architecture's continuous solid network in equilibrium with atmospheric humidity to create a continuous water sheath that acts as a 3-D proton wire. As a result, monolithic manganese oxide ambigels exhibit an equilibrium conductometric response to humidity that is 14 times greater than that of previous reports for electrolytic manganese oxide. A packed bed of 1-10-microm ambigel particulates in physical contact with one another, each with the same nanoscale morphology as the monolithic nanoarchitecture, also support long-range proton diffusion; however, the sensitivity to humidity is four times lower than the monolithic form due to restricted proton transport between adjacent particulates. Films composed of 0.3-12-microm ambigel particulates supported on interdigitated array electrodes with 20-microm electrode spacing express finite-diffusion behavior due to the short distance between the contact electrodes and have a conductometric sensitivity to humidity comparable to electrolytic MnO2 and 17 times lower than the monolithic ambigel. These results suggest that controlling the nature of the porous and solid phases in a nanoarchitecture provides a mechanism to limit interference from condensed water in conductometric gas-phase sensors. In addition, continuous monolithic architectures should improve electrochemical performance in devices where efficient long-range transport of protons or other ions is critical.  相似文献   

4.
In this study, an organic semiconductor 5,10,15,20-tetrakis(4′-isopropylphenyl) porphyrin (TIPP) was synthesized and investigated as an active material in surface-type multifunctional sensor. As electrodes, 100 nm thick Ag films were deposited on 25 mm × 25 mm glass substrate with 40 μm gap between them. Thin film of TIPP of area 15 mm × 15 mm was thermally sublimed to cover the gap between the silver electrodes. Thickness of TIPP film was 100 nm. A change in electrical resistance and capacitance of the fabricated device was observed with the increase in relative humidity (RH), temperature, and illumination. Hysteresis, response, and recovery times were investigated over a wide range of RH (0–94%). Activation energy of the TIPP was estimated. An equivalent circuit of the Ag/TIPP/Ag humidity, temperature, and illumination sensor was developed. Humidity, temperature, illumination dependent capacitive, and resistive properties of this sensor make it promising for use in a humidity, temperature, and lux multi-meters.  相似文献   

5.
The mixed-conductive ceramic oxide Gd0.2Ce0.8O2−δ (GCO) particles with 40–50 nm were synthesized by using a combined citrate and EDTA complexation method. The material was characterized with powder X-ray diffraction, transmission electron microscopy, energy dispersive spectrometry, and X-ray photoelectron spectroscopy. A humidity sensor was fabricated by screening GCO onto a ceramic substrate with a pair of interdigitated electrodes. The sensor shows a linear relationship between logarithm impedance and relative humidity in the range of 33–98% when the measurement frequency range is 20 Hz–1 kHz. Typical response and recovery times of the sensor are 40 and 210 s, respectively, indicating that desorption rate of water molecule inside the GCO material is slower than the adsorption rate. The humidity sensing mechanism was discussed.  相似文献   

6.
Impedance type relative humidity detector is fabricated by depositing electrospun silica nanofibers on glass substrate. The silica nanofibers with an average diameter ∼150 nm and length ∼100 μm were used. Thermogravimetric and differential scanning calorimetric analysis confirm that the accurate annealing temperature is 500 °C for complete removal of PVP. Humidity detecting devices were fabricated by defining titanium electrodes on top of the silica nanofibers. The performance of silica nanofibers humidity detectors was tested by AC electrical measurements at 40–90% relative humidity. The response and the recovery times were 5 s and 3 s, respectively, between 40% and 90% relative humidity. Contribution of dipoles, space charge polarization, relaxation of these dipoles and low frequency dispersion phenomenon were observed during impedance measurements.  相似文献   

7.
Silicon nanoporous pillar array (Si-NPA), with micro/nanometer composite structure, was prepared by hydrothermally etching single crystal silicon. Resistive humidity sensors were fabricated through evaporating coplanar interdigital aluminium electrodes on Si-NPA and the humidity sensing properties were tested. It was shown that with relative humidity changing from 11.3% to 94.6%, a resistance device response over one order of magnitude with response time less than 1 s was achieved at frequency of 1 kHz. This extraordinary property was mainly attributed to the unique morphology of Si-NPA, i.e., the regular pillar array provided an effective pathway for vapor transportation and the nanoporous structure of the pillars greatly enlarged the sensing areas.  相似文献   

8.
Here, a series of novel poly(ether ether ketone) containing sulfoalkylamine pendant groups (SNPEEK-x) were synthesized by grafting copolymerization reaction. The chemical structure of SNPEEK-x was identified by 1H NMR and the morphology of all films was measured by SAXS and TEM. The impedance varied for five orders of magnitude (from 107 to 102 Ω) as the relative humidity increasing from 11 to 97% RH. At the same time, all samples exhibited a fast response time of less than?3 s, outstanding repeatability and good long-term durability against high humidity. Especially, SNPEEK-x sensors displayed an extremely small humidity hysteresis in the impedance versus RH relationship during absorption and desorption processes. These essential properties of humidity sensors such as the impedance at various humidity, sensitivity, linearity and humidity hysteresis revealed that SNPEEK-x are suitable to be used as humidity sensors.  相似文献   

9.
This study reports the humidity sensing characteristics of ZnO–WO3 nanocomposite. Pellet samples of 0–5 weight% ZnO in WO3 were sintered from 300 to 600 ° C. When exposed to humidity, the resistance of the sensing samples was found to decrease with increase in relative humidity (RH). Five percent ZnO-doped WO3 showed maximum sensitivity of 20.95 M Ω/%RH in 15–95% RH range. Sensor parameters like reproducibility, aging, hysteresis, response and recovery times were also studied. Sensing mechanism is discussed in terms of sintering temperature, composition and crystallite size of the sensing element. It was observed that sensing mechanism is strongly based on annealing temperature and percentage of doping. The sensing samples have also been investigated by X-ray diffraction, scanning electron microscope (SEM) and Raman spectroscopy. The crystalline size of the sample was identified by powder X-Ray Diffraction data. The SEM analysis was used to study the surface morphology. The structure, phase and the degree of crystallinity of the materials were examined by Raman spectroscopy.  相似文献   

10.
Traditional ionic liquids are sensitive to humidity but with long response time and nonlinear response.Pure liquid-state ionic liquids are usually hard for dehydration which have ultralong response time for humidity sensing.The immobilization of ionic liquids provide a possible way for high performance humidity sensing.Hydrophobic materials and structures also promised faster response in humidity sensing,because of easier desorption of water.In this work,we prepared flexible humidity sensitive composites based on hydrophobic ionic liquid and polymer.The combination of hydrophobic ionic liquid with hydrophobic polymer realized linear response,high sensitivity with low hysteresis to humidity.By adjusting the ratio of ionic liquid,not only the impedance but also the hydrophobicity of composite could be modulated,which had a significant influence on the humidity sensing performance.The morphology and microstructure of the material also affected its interaction with water molecules.Due to the diverse processing methods of polymer,highly transparent film fabricated by spinning-coating and nanofibrous membrane fabricated by electrospinning could be prepared and exhibited different response time,which could be used for different application scenarios.Especially,the fibrous membrane made with electrospinning method showed an ultrafast response and could distinguish up to 120 Hz humidity change,due to its fibrous structure with high specific surface area.The humidity sensors with ultrafast,linear response and high sensitivity showed potential applications in human respiratory monitoring and flexible non-contact switch.To better show the multifunction of ionic liquid-polymer composite,as a proof of concept,we fabricated an integrated humidity sensitive color change device by utilizing lower ionic liquid content composite for sensing in the humidity sensing module and higher ionic liquid content composite as the electrolyte in the electrochromic module.  相似文献   

11.
A ceramic humidity sensor using alkali phosphate (tribasic), phosphoric acid and zircon as raw materials was studied. The ceramic body prepared by doping with sodium phosphate consists of zircon, Nasicon and probably glassy sodium polyphosphate. The sensitivity for humidity can be improved by doping with sodium phosphate and phosphoric acid. The specimen in which the mole ratio (Na/P) is nearly equal to one is desirable for a humidity sensor with respect to sensitivity, and the impedance is 2×106 cm or below in a dry atmosphere. The formation of Nasicon explains the decrease of impedance in the low humidity region and a decrease of impedance in the high humidity region can be achieved by the formation of sodium polyphosphate.  相似文献   

12.
In this paper, highly-ordered TiO2 nanotube (TNT) electrodes fabricated by anodization at 20 V in 0.1 M F-based solution were annealed in O2, N2 and CO respectively. The surface properties of the TiO2 electrodes after annealing treatment by different gases were studied by means of photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the TNT electrodes were investigated by cyclic voltammetry, steady-state polarization and photocurrent response measurements. The results showed that Tin+ (n = 0-3) cations and oxygen vacancies existed in the TNT electrode after annealing in CO, leading to a very efficient electron transfer rate of 1.34 × 10− 3 cm/s. Steady-state polarization measurement and photocurrent response demonstrated that the electrode potential of oxygen evolution reaction (OER) reduced by 20% and the photocurrent response increased by 50% for CO-annealed TNT electrode compared with O2-annealed TNT electrode.  相似文献   

13.
The Russian national humidity standard of gases has been modernized in order to increase the number of reproducible quantities of humidity (relative humidity, dew/frost-point temperature, mole fraction) and to extend the humidity and operating temperature ranges. The basis of the standard comprises two humidity generators with operating temperature ranges from \(5\,^{\circ }\hbox {C}\) to \(90\,^{\circ }\hbox {C}\) and from \(-60\,^{\circ }\hbox {C}\) to \(15\,^{\circ }\hbox {C}\). The common working range (from \(5\,^{\circ }\hbox {C}\) to \(15\,^{\circ }\hbox {C}\)) allows comparison of the generators. The generators use the two-pressure method to generate humid gas defined in terms of the relative humidity (from 5 %rh to 98 %rh at temperatures from \(90\,^{\circ }\hbox {C}\) to \(-60\,^{\circ }\hbox {C}\)) and the one-pressure (or phase equilibrium) method to generate humid gas defined in terms of the vapor mole fraction (from 0.6 ppm to \(700\times 10^{3}\) ppm) and dew/frost-point temperature (from \(-79\,^{\circ }\hbox {C}\) to \(90\,^{\circ }\hbox {C}\)). The expanded uncertainty in the relative humidity is no more than 0.2 %rh, no more than 1.2 % in the vapor mole fraction, and no more than \(0.12\,^{\circ }\hbox {C}\) in the dew/frost-point temperature. The ordinary hygrometers are traceable to the national primary standard in accordance with the state hierarchical chain for measuring means of gas humidity. The state hierarchical chain consists of three branches for means of measurements: (a) mole fraction, (b) dew/frost-point temperature, and (c) relative humidity with each branch represented as the scheme: primary standard–secondary standard–working standard–ordinary hygrometer. Calibration and verification of working standards and ordinary hygrometers, and their traceability to the primary standard use methods of (i) direct measurements, (ii) direct comparison, or (iii) comparison with a comparator.  相似文献   

14.
Fast cyclic voltammetry (CV) was evaluated over sweep rates of 20-1000 V/s at Au disk electrodes (25 and 10 μm) for end-capillary detection in capillary electrophoresis with metal ions as test analytes; some studies were also done with 25-μm Pt disk electrodes. The waveform applied to the electrode consisted of a preconcentration period (55-330 ms) followed by cyclic voltammetry (2-100 ms). Maximum signal-to-noise was obtained with the integrated CV current as the analytical signal, and this was linearly proportional to sweep rate; maximum response was obtained at sweep rates of >100 V/s for 10-μm electrodes and >200 V/s for 25-μm electrodes; sweep rates of >400 V/s caused peak tailing due to trapping of the analyte at the electrode. With this CV detection approach, comigrating analytes could be identified and determined. Reproducibilities for six analytes over the range 1.0 × 10(-)(7)-1.0 × 10(-)(5) mol/L were 2%-5%, and calibration curves were linear, with response factors in the range of 2%-6%. Detection limits (2 × peak-to-peak baseline noise) were in the range of 5 × 10(-)(9)-4 × 10(-)(8) mol/L, which are 1-2 orders of magnitude better than results obtained previously with square-wave pulsed amperometric detection of metal ions.  相似文献   

15.
Humidity response of Radio Frequency sputtered MgFe2O4 thin films onto alumina substrate, annealed at 400 °C, 600 °C and 800 °C has been investigated. Crystalline phase formation of thin films annealed at different temperature was analyzed by X-ray Diffraction. A particle/grain like microstructure in the grown thin films was observed by Scanning Electron Microscope and Atomic Force Microscope images. Film thickness for different samples was measured in the range 820-830 nm by stylus profiler. Log R (Ω) response measurement was taken for all thin films for 10-90% relative humidity (% RH) change at 25 °C. Resistance of the film increased from 5.9 × 1010 to 3 × 1012 at 10% RH with increase in annealing temperature from 400 °C to 800 °C. A three-order magnitude, 1012 Ω to 109 Ω drop in resistance was observed for the change of 10 to 90% RH for 800 °C annealed thin film. A good linear humidity response, negligible humidity hysteresis and minimum response/recovery time of 4 s/6 s have been measured for 800 °C annealed thin film.  相似文献   

16.
New plasticized PVC membranes iodide selective electrodes have been prepared by incorporating bis(trans-cinnamaldehyde)1,3-propanediimine zinc(II) chloride [ZnLCl2] and bis(trans-cinnamaldehyde) 1,3-propandiimine cadmium(II) chloride [CdLCl2] on the surface of graphite disk electrodes. At optimum value of variables the proposed electrodes have selective response to iodide with respect to a number of inorganic and organic anions with near-Nernstian slopes of − 60 ± 1.9 and − 58.5 ± 1.9 mV/decade of iodide concentration over the range 1.0 × 10− 6-1.0 × 10− 1 M with detection limits of 4.0 × 10− 7 and 3.0 × 10− 7 M for the electrodes based on [ZnLCl2] and [CdLCl2], respectively. The electrodes based on both ionophores have response times of about (6 s), with stable reproducible response during 2 months, while their responses is independent of pH over the range 2.5-10.5. The proposed electrodes successfully have been applied for evaluation of iodide ion content in real samples with complicated matrices including water and pharmaceutical samples.  相似文献   

17.
New salicylate-selective electrodes based on aluminum-(III) and tin(IV) salophens are described. The electrodes were prepared by incorporating the ionophores into plasticized poly(vinyl chloride) (PVC) membranes, which were directly coated on the surface of graphite electrodes. These novel electrodes display high selectivity for salicylate with respect to many common inorganic and organic anions. The influence of membrane composition and pH and the effect of lipophilic cationic and anionic additives on the response properties of the electrodes were investigated. The electrode based on aluminum salophen, with 32% PVC, 65.8% plasticizer, and 2.2% ionophore, shows the best potentiometric response characteristics and displays a linear log [Sal-] vs EMF response over the concentration range 1 x 10(-6) - 1 x 10(-1) M in phosphate buffer solutions of pH 7.0, with a Nernstian slope of -59.2 mV/decade of salicylate concentration. Highest selectivity was observed for the membrane incorporating 38.8% PVC, 57.3% plasticizer, 2.6% Sn(salophen), and 1.3% sodium tetraphenylborate. The electrodes exhibit fast response times and micromolar detection limits (approximately 1 x 10(-6) M salicylate) and could be used over a wide pH range of 3-8. Applications of the electrodes for determination of salicylate in pharmaceutical preparations and biological samples are reported.  相似文献   

18.
This paper investigates the suitability of porous GaAs as a semiconductor material for sensing humidity. The authors have developed two types of sensors based on Pd/porous GaAs and Pd/GaAs Schottky contacts for humidity measurements. It was found that the porosity on GaAs wafer promoted the sensing properties of the contact used as highly sensitive humidity sensor toward different amounts of relative humidity operated at room temperature. On the contrary, the Pd/GaAs sample operated at room temperature exhibited negligible sensitivity to relative humidity. The advantages of using porous GaAs for Schottky humidity sensor are the following: high sensitivity, low response time, and insignificant dependence on temperature. Current-voltage (I-V) characteristics of the Pd/porous GaAs Schottky humidity sensor exhibited a saturation current value of 8.5times10-10 A under dry condition (5% relative humidity). This was increased to 7.0times10-9 A when submitted to a relative humidity of 25%. The saturation current was further increased considerably to 3.0times10-7 A as the relative humidity was increased to 95%. This is more than two orders of magnitude increase in saturation current compared to dry condition. A parameter called humidity sensitivity was defined using the current value at a fixed forward voltage of 0.2 V to present the sensitivity of the sensor. Response times are reported to discuss the adsorption and desorption characteristics of the device. Pd/porous GaAs sensor operated at room temperature showed a fast response time of 2 s and a sensitivity value of 93.5% in the presence of 25% relative humidity. Furthermore, the influence of increase in relative humidity as well as heating effects on the responsivity of the sensor is described. Scanning electron microscopy analysis of the Pd/porous GaAs sample exhibited highly porous structures  相似文献   

19.
This paper reports the synthesis and characterization of nanocrystalline indium tin oxide (ITO) and its application as humidity and gas sensors. The structure and crystallite size of the synthesized powder were determined by X-ray diffraction. The minimum crystallite size was found 5 nm by Debye–Scherrer equation and confirmed by transmission electron microscopy image. Optical characterizations of ITO were studied using UV–visible absorption spectroscopy and Fourier transforms infrared spectroscopy. Thermal analysis was carried out by differential scanning calorimetry. Further, the ITO thin film was fabricated using sol–gel spin coating method. The surface morphology of the fabricated film was investigated using scanning electron microscopy images. For the study of humidity sensing, the thin film of ITO was exposed with humidity in a controlled humidity chamber. The variations in resistance of the film with relative humidity were observed. The average sensitivity of the humidity sensor was found 0.70 MΩ/%RH. In addition, we have also investigated the carbon dioxide (CO2) and liquefied petroleum gas sensing behaviour of the fabricated film. Maximum sensitivity of the film was ~17 towards CO2. Its response and recovery times were ~5 and 7 min respectively. Sensor based on CO2 is 97 % reproducible after 3 months of its fabrication. Better sensitivity, small response time and good reproducibility recognized that the fabricated sensor is challenging for the detection of carbon dioxide.  相似文献   

20.
In this study, Ag nanowire (AgNW) was used to fabricate ITO/AgNW/ITO (IAI) and ZnO/AgNW/ZnO (ZAZ) hybrid transparent electrodes. The covered area ratio of AgNW showed that when AgNW concentration n AgNW ≥ 2.0 mg/mL, AgNW easily agglomerated during the spin-coating. Meanwhile, Haacke index and haziness measurements also indicated that for application with high optical demands, the AgNW concentration should be ≤2.0 mg/mL for both ZnO or ITO systems. In this study, when n AgNW = 2.0 mg/mL, the sheet resistant of ZAZ electrodes was 10.5 Ω/sq while the transmittance (including glass) was 72.7% in the visible region. For IAI electrodes, the sheet resistant was 18.8 Ω/sq and transmittance (including glass) was 78.2% in the visible region. Further analysis implied that the sheet resistance of hybrid electrodes could be as low as 10 Ω/sq by optimizing AgNW distribution as well as using suitable annealing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号