首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A new experimental technique was developed for detecting structure changes at electrode/electrolyte interface of lithium cell using X-ray reflectometry and two-dimensional model electrodes with a restricted lattice-plane. The electrodes were constructed with an epitaxial film of LiCoO2 synthesized by pulsed laser deposition method. The orientation of the epitaxial film depends on the substrate plane; the 2D layer of LiCoO2 is parallel to the SrTiO3 (1 1 1) substrate ((003)LiCoO2//(111)SrTiO3)((003)LiCoO2//(111)SrTiO3), while the 2D layer is perpendicular to the SrTiO3 (1 1 0) substrate ((110)LiCoO2//(110)SrTiO3)((110)LiCoO2//(110)SrTiO3). The anisotropic properties were confirmed by electrochemical measurements. Ex situ X-ray reflectivity measurements indicated that the impurity layer existed on the as-grown LiCoO2 was dissolved and a new SEI layer with lower density was formed after soaking into the electrolyte. In situ X-ray reflectivity measurements indicated that the surface roughness of the intercalation (1 1 0) plane increased with applying voltages, while no significant changes in surface morphology were observed for the intercalation non-active (0 0 3) plane during the pristine stage of the charge–discharge process.  相似文献   

3.
Within the challenge of greenhouse gas reduction, hydrogen is regarded as a promising decarbonized energy vector. The hydrogen production by natural gas reforming and lignocellulosic biomass gasification are systematically analyzed by developing thermo-economic models. Taking into account thermodynamic, economic and environmental factors, process options with CO2 mitigation are compared and optimized by combining flowsheeting with process integration, economic analysis and life cycle assessment in a multi-objective optimization framework. The systems performance is improved by introducing process integration maximizing the heat recovery and valorizing the waste heat. Energy efficiencies up to 80% and production costs of 12.5–42 $/GJH2GJH2 are computed for natural gas H2 processes compared to 60% and 29–61 $/GJH2GJH2 for biomass processes. Compared to processes without CO2 mitigation, the CO2 avoidance costs are in the range of 14–306 $/tCO2,avoidedtCO2,avoided. The study shows that the thermo-chemical H2 production has to be analyzed as a polygeneration unit producing hydrogen, captured CO2, heat and electricity.  相似文献   

4.
In our study two strains, Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus, were chosen as model microorganisms for investigation of biohydrogen production. By using E. aerogenes, operated in repetitive batch mode, the highest cumulative volumetric hydrogen evolution rate was obtained at an initial glucose concentration of 13.7 g/L. Growing C. saccharolyticus in repetitive batch mode on xylose revealed that complex media resulted in higher volumetric hydrogen productivities but lower hydrogen yields than defined media. Chemostat culture investigations of E. aerogenes and C. saccharolyticus on glucose revealed that higher dilution rates resulted in higher biohydrogen productivities, but also in lower product yields. The highest hydrogen volumetric productivities were obtained with E. aerogenes  , while the highest product to substrate yield (Y(H2/s))(Y(H2/s)) and hydrogen to carbon dioxide yield (Y(H2/CO2))(Y(H2/CO2)) were obtained with C. saccharolyticus  . Y(H2/CO2)Y(H2/CO2) is an important physiological parameter, regarding a future integration of biohydrogen production into the 5th generation of biofuels.  相似文献   

5.
CO affects H2 activation on supported Pt in the catalyst layers of a PEMFC and significantly degrades overall fuel cell performance. This paper establishes a more fundamental understanding of the effect of humidity on CO poisoning of Pt/C at typical fuel cell conditions (80 °C, 2 atm). In this work, direct measurements of hydrogen surface concentration on Pt/C were performed utilizing an H2-D2 switch with Ar purge (HDSAP). The presence of water vapor decreased the rate of CO adsorption on Pt, but had very little effect on the resulting CO surface coverage on PtS (θCO) at steady-state. The steady-state θCOs at 80 °C for Pt exposed to H2 (PH2=1 atm) and a mixture of H2/H2O (1 atm H2, 10%RH) were 0.70 and 0.66 ML, respectively. Furthermore, total strongly bound surface hydrogen measured after exposure to H2/H2O was, surprisingly, the sum of the exchangeable surface hydrogen contributed by each component, even in the presence of CO. In the absence of any evidence for strong chemisorption of H2O on the carbon support with/without Pt, this additive nature and seemingly lack of interaction from the co-adsorption of H2 and H2O on Pt may be explained by the repulsion of strongly adsorbed H2O to the stepped-terrace interface at high coverages of surface hydrogen.  相似文献   

6.
Time-Resolved Particle Image Velocimetry was used to study transient interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures. Lean and stoichiometric mixtures with hydrogen mole fraction in the fuel (hydrogen plus   methane), xH2xH2, varying in the range of 0–0.5 were investigated.  相似文献   

7.
We demonstrate Schottky diode type hydrogen (H2) sensors both on a planar GaN film grown by Metal Organic Chemical Vapor Deposition and on a honeycomb GaN nanonetwork grown by Molecular Beam Epitaxy. The metal-semiconductor Pt/planar GaN film Schottky diode was fabricated and used as a H2 sensor element with response time τ   of 80 s (10,000 ppm) and 2000 ppm limit of detection for hydrogen gas (LODH2)(LODH2) at 373 K. A significant improvement in H2 detection is observed for the honeycomb GaN nanonetwork. The characteristics of the H2 sensor on the honeycomb GaN nanonetwork are quantitatively studied in comparison with that on the planar GaN film. The response time τ is shortened by a factor of 27 (3 s versus   80 s) and the LODH2LODH2 is lowered by two orders of magnitude, from 2000 to 50 ppm. Moreover, the operating temperature could be reduced to room temperature. Through analyzing the transient-state, we observed a reduction of activation energy Ea from 6.22 to 2.4 kcal/mol. The reduced activation energyEa is regarded as the reason that leads to a superior H2 detection of the honeycomb GaN nanonetwork in terms of response time τ and operating temperature.  相似文献   

8.
Alumina supported Pt group metal monolithic catalysts were investigated for selective oxidation of CO in hydrogen-rich methanol reforming gas for proton exchange membrane fuel cell (PEMFC) applications. The results are described and discussed in the present paper and show that Pt/γAl2O3Pt/γAl2O3 was the most promising candidate to selectively oxidize CO from an amount of about 1 vol% to less than 100 ppm. We have investigated the effect of the O2 to CO feed ratio, the feed concentration of CO, the presence of H2O and/or CO2, and the space velocity on the activity, selectivity and stability of Pt/Al2O3 monolithic catalysts. Afterwards, the Pt/Al2O3 catalyst was scaled up and applied in 5 kW hydrogen producing systems based on methanol steam reforming and autothermal reforming. The hydrogen produced was then used as fuel for an integrated PEMFC.  相似文献   

9.
10.
Reducing idle speed is an effective way for decreasing engine idle fuel consumption. Unfortunately, due to the increased residual dilution and dropped combustion temperature, spark-ignited (SI) gasoline engines are prone to suffer high cyclic variation and even stall at low idle speeds. This paper investigated the effect of hydrogen addition on the performance of an SI gasoline engine at reduced idle speeds of 600, 700 and 800 rpm. The test results shows that cyclic variation was raised with the decrease of idle speed but reduced obviously with the increase of hydrogen energy fraction (βH2)(βH2). Decreasing idle speed and adding hydrogen were effective for reducing engine idle fuel consumption. The total fuel energy flow rate was effectively dropped from 30.8 MJ/h at 800 rpm and βH2βH2 = 0% to 17.6 MJ/h at 600 rpm and βH2βH2 = 19.9%. Because of the dropped fuel energy flow rate causing the reduced combustion temperature, both cooling and exhaust losses were markedly reduced after decreasing idle speed and adding hydrogen. HC and CO emissions were dropped with the increase of βH2βH2, but increased after reducing idle speed. However, NOx emissions were decreased after reducing idle speed and adding hydrogen, due to the dropped peak cylinder temperature.  相似文献   

11.
A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2,N2O2,N2, water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm ×× 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λminλmin. The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.  相似文献   

12.
The effects of pressure and composition on the sooting characteristics and flame structure of laminar diffusion flames were investigated. Flames with pure methane and two different methane-based, biogas-like fuels were examined using both experimental and numerical techniques over pressures ranging from 1 to 20 atm. The two simulated biogases were mixtures of methane and carbon dioxide with either 20% or 40% carbon dioxide by volume. In all cases, the methane flow rate was held constant at 0.55 mg/s to enable a fair comparison of sooting characteristics. Measurements for the soot volume fraction and temperature within the flame envelope were obtained using the spectral soot emission technique. Computations were performed by solving the unmodified and fully-coupled equations governing reactive, compressible flows, which included complex chemistry, detailed radiation heat transfer and soot formation/oxidation. Overall, the numerical simulations correctly predicted many of the observed trends with pressure and fuel composition. For all of the fuels, increasing pressure caused the flames to narrow and soot concentrations to increase while flame height remained unaltered. All fuels exhibited a similar power-law dependence of the maximum carbon conversion on pressure that weakened as pressure was increased. Adding carbon dioxide to the methane fuel stream did not significantly effect the shape of the flame at any pressure; although, dilution decreased the diameter slightly at 1 atm. Dilution suppressed soot formation at all pressures considered, and this suppression effect varied linearly with CO2CO2 concentration. The suppression effect was also larger at lower pressures. This observed linear relationship between soot suppression and the amount of CO2CO2 dilution was largely attributed to the effects of dilution on chemical reaction rates, since the predicted maximum magnitudes of soot production and oxidation also varied linearly with dilution.  相似文献   

13.
In hydrogen solid–gas reaction at 300 K and 1 bar, the hydrogen content for Ti3.87Ni1.73Fe0.7Ox (0.2≤ × ≤0.8) alloys was in range 1.93–0.05 (Cwt.H,%), and discharge capacity of 360–235 A h/kg was achieved accordingly. The ΔHH2ΔHH2 and ΔSH2ΔSH2 values of −32.29 kJ mol−1 and −111.04 J mol−1 K−1, respectively, for Ti3.87Ni1.73Fe0.7O0.5 alloy were obtained using experimental PCT relations, where hysteresis effect was only slightly visible. The half-cell potentials (vs. Hg/HgO) of metal hydride (MH) electrodes based on Ti3.87Ni1.73Fe0.7Ox (0.2≤ ×≤ 0.8) alloys were calculated.  相似文献   

14.
Anaerobic hydrogen production from organic wastewater, an emerging biotechnology to generate clean energy resources from wastewater treatment, is critical for environmental and energy sustainability. In this study, hydrogen production, biomass growth and organic substrate degradation were comprehensively examined at different levels of two critical parameters (chemical oxygen demand (COD) and pH). Hydrogen yields had a reverse correlation with COD concentrations. The highest specific hydrogen yield (SHY) of 2.1 mole H2/mole glucose was achieved at the lowest COD of 1 g/L and decreased to 0.7 mole H2/mole glucose at the highest COD of 20 g/L. The pH of 5.5–6.0 was optimal for hydrogen production with the SHY of 1.6 mole H2/mole glucose, whereas the acidic pH (4.5) and neutral pH (6.0–7.0) lowered the hydrogen yields. Under all operational conditions, acetate and butyrate were the main components in the liquid fermentation products. Additionally, a comprehensive kinetic analysis of biomass growth, substrate degradation and hydrogen production was performed. The maximum rates of microbial growth (μm) and substrate utilization (Rsu) were 0.03 g biomass/g biomass/day and 0.25 g glucose/g biomass/day, respectively. The optimum pH for the rate of hydrogen production (RH2RH2) and SHY were 5.89 and 5.74 respectively. Based on the kinetic analysis, the highest RH2RH2 and SHY for batch-mode anaerobic hydrogen production systems were projected to be 13.7 mL/h and 2.32 mole H2/mole glucose.  相似文献   

15.
The combustion of aluminum particle, liquid water, and hydrogen peroxide (H2O2) mixtures is studied theoretically for a pressure range of 1–20 MPa and particle sizes between 3 and 70 μm. The oxidizer-to-fuel (O/F) weight ratio is varied in the range of 1.00–1.67, and four different H2O2 concentrations of 0%, 30%, 60%, and 90% are considered. A multi-zone flame model is developed to determine the burning behaviors and combustion-wave structures by solving the energy equation in each zone and enforcing the temperature and heat-flux continuities at the interfacial boundaries. The entrainment of particles is taken into account. Key parameters that dictate the burning properties of mixtures are found to be the thermal diffusivity, flame temperature, particle burning time, ignition temperature, and entrainment index of particles. When the pressure increases from 1 to 20 MPa, the flame thickness decreases by a factor of two. The ensuing enhancement of conductive heat flux to the unburned mixture thus increases the burning rate, which exhibits a pressure dependence of the form rb = apm. The exponent, m, depends on reaction kinetics and convective motion of particles. Transition from diffusion to kinetically-controlled conditions causes the pressure exponent to increase from 0.35 at 70 μm to 1.04 at 3 μm. The addition of hydrogen peroxide has a positive effect on the burning properties. The burning rate is nearly doubled when the concentration of hydrogen peroxide increases from 0 to 90%. For the conditions encountered in this study, the following correlation for the burning rate is developed: rb[cm/s]=4.97(p[MPa])0.37(dp[μm])-0.85(O/F)-0.54exp(0.0066CH2O2).rb[cm/s]=4.97(p[MPa])0.37(dp[μm])-0.85(O/F)-0.54exp(0.0066CH2O2).  相似文献   

16.
Shuofeng Wang  Changwei Ji  Bo Zhang 《Energy》2010,35(12):4754-4760
Because of the low combustion temperature and high throttling loss, SI (spark-ignited) engines always encounter dropped performance at low load conditions. This paper experimentally investigated the co-effect of cylinder cutoff and hydrogen addition on improving the performance of a gasoline-fueled SI engine. The experiment was conducted on a modified four-cylinder SI engine equipped with an electronically controlled hydrogen injection system and a hybrid electronic control unit. The engine was run at 1400 rpm, 34.5 Nm and two cylinder cutoff modes in which one cylinder and two cylinders were closed, respectively. For each cylinder closing strategy, the hydrogen energy fraction in the total fuel (βH2)(βH2) was increased from 0% to approximately 20%. The test results demonstrated that engine indicated thermal efficiency was effectively improved after cylinder cutoff and hydrogen addition, which rose from 34.6% of the original engine to 40.34% of the engine operating at two-cylinder cutoff mode and βH2=20.41%βH2=20.41%. Flame development and propagation periods were shortened with the increase of the number of closed cylinders and hydrogen blending ratio. The total cooling loss for all working cylinders, and tailpipe HC (hydrocarbons), CO (carbon monoxide) and CO2 (carbon dioxide) emissions were reduced whereas tailpipe NOx (nitrogen oxide) emissions were increased after hydrogen addition and cylinder closing.  相似文献   

17.
The influence of natural gas (NG) on the auto-ignition behavior of hydrogen (H2)/nitrogen (N2) fuel jets injected into a vitiated cross-flow was studied at conditions relevant for practical combustion systems (p = 15 bar, Tcross-flow = 1173 K). In addition, the flame stabilization process following auto-ignition was investigated by means of high-speed luminosity and shadowgraph imaging. The experiments were carried out in an optically accessible jet in cross-flow (JICF) test section. In a H2/NG/N2 fuel mixture, the fraction of H2 was stepwise increased while keeping the N2 fraction approximately constant. Two different jet penetration depths, represented by two N2 fraction levels, were investigated. The results reveal that auto-ignition kernels occurred even for the lowest tested H2 fuel fraction (XH2/NG=XH2/(XH2+XNG)=80%)(XH2/NG=XH2/(XH2+XNG)=80%), but did not initiate a stable flame in the duct. Increasing XH2/NGXH2/NG decreased the distance between the initial position of the auto-ignition kernels and the fuel injector, finally leading to flame stabilization. The H2 fraction for which flame stabilization was initiated depended on jet penetration; flame stabilization occurred at lower H2 fractions for the higher jet penetration depth (XH2/NGXH2/NG = 91% compared to 96%), revealing the influence of different flow fields and mixing characteristics on the flame stabilization process. It is hypothesized that the flame stabilization process is related to kernels extending over the duct height and thus altering the upstream conditions due to considerable heat release. This enabled subsequent kernels to occur close to the fuel injector until they could finally stabilize in the recirculation zone of the jet lee.  相似文献   

18.
19.
An in-depth analysis of the energy consumption and CO2 emissions of the European glass industry is presented. The analysis is based on data of the EU ETS for the period 2005–2007 (Phase I). The scope of this study comprises the European glass industry as a whole and its seven subsectors. The analysis is based on an assignment of the glass installations (ca. 450) within the EU ETS to the corresponding subsectors and an adequate matching of the respective production volumes. A result is the assessment of the overall final energy consumption (fuel, electricity) as well as the overall CO2 emissions (process, combustion and indirect emissions) of the glass industry and its subsectors in the EU25/27. Moreover, figures on fuel mix as well as fuel intensity and CO2 emissions intensity (i.e. carbon intensity) are presented for each of the subsectors on aggregated levels and for selected EU Member States separately. The average intensity of fuel consumption and direct CO2 emissions of the EU25 glass industry decreased from 2005 to 2007 by about 4% and amounted in 2007 to 7.8 GJ and 0.57 tCO2tCO2 per tonne of saleable product, respectively. The economic energy intensity was evaluated with 0.46 toe/1000€ (EU27).  相似文献   

20.
Up to now, the analysis of the effects of medium composition on biohydrogen production of Caldicellulosiruptor saccharolyticus was focused mainly on salt concentrations and complex compounds. Within this work we studied the effects of the presence of organic and/or inorganic nitrogen in the medium composition aiming to induce metabolic changes in C. saccharolyticus   to improve its hydrogen evolution rate (HER) and hydrogen specific productivity (qH2)(qH2). Biohydrogen productivities and hydrogen to substrate yield (Y(H2/s))(Y(H2/s)) of C. saccharolyticus   on xylose in batch mode were higher working in a complex medium than in a defined one; but no significant difference could be settled according to hydrogen to carbon dioxide yields (Y(H2/CO2))(Y(H2/CO2)). The specific growth rate of C. saccharolyticus on complex medium was settled at 0.1 h−1 operating in chemostat mode to achieve the highest H2-productivities under stable conditions. In chemostat mode on xylose, a reduction of the ammonium feed concentration in a defined medium until N-limiting conditions involved higher qH2qH2 comparing with a straight C-limiting growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号