首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiFePO4-Li3V2(PO4)3 composite cathode material is synthesized by aqueous precipitation of FeVO4·xH2O from Fe(NO3)3 and NH4VO3, following chemical reduction and lithiation with oxalic acid as the reducer and carbon source. Samples are characterized by XRD, SEM and TEM. XRD pattern of the compound synthesized at 700 °C indicates olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 are co-existed. TEM image exhibits that LiFePO4-Li3V2(PO4)3 particles are encapsulated with a carbon shell 5-10 nm in thickness. The LiFePO4-Li3V2(PO4)3 compound cathode shows good electrochemical performance, and its discharge capacity is about 139.1 at 0.1 C, 135.5 at 1 C and 116 mA h g−1 at 3 C after 30 cycles.  相似文献   

2.
Li3V(2 − 2x/3)Mgx(PO4)3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C6H10O4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li3V(2 − 2x/3)Mgx(PO4)3/C network structure is formed. The effect of Mg2+ doped on the electrochemical properties of Li3V2(PO4)3/C positive materials has been studied. Li3V1.8Mg0.30(PO4)3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li3V2(PO4)3/C, Li3V(2 − 2x/3)Mgx(PO4)3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li3V1.8Mg0.30(PO4)3 exhibits higher structural stability than the undoped system.  相似文献   

3.
Composites of monoclinic Li3−xM′xV2−yM″2y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti) with carbon were synthesized by solid-state reaction using oxalic acid or 6% H2/Ar gas mixture as reducing agents at sintering temperature of 850 °C. The samples were characterized by X-ray diffraction (XRD), voltammetry and electrochemical galvanostatic cycling. The capacity of Li3V2(PO4)3 synthesized using hydrogen as the reducing agent was 127 mA h g−1 and decreased to 120 mA h g−1 after 20 charge-discharge cycles. The substitution of lithium and vanadium for other ions did not result in the improvement of the electrochemical characteristics of the samples.  相似文献   

4.
Monoclinic Li3V2(PO4)3 can be rapidly synthesized at 750 °C for 5 min (MW5m) by using temperature-controlled microwave solid-state synthesis method (TCMS). The carbon-free sample MW5m presents well electrochemical properties. In the cut-off voltage 3.0-4.3, MW5m presents a charge capacity 132 mAh g−1, almost equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1), and discharge capacity 126.4 mAh g−1. In the cut-off voltage 3.0-4.8 V, MW5m shows an initial discharge capacity of 183.4 mAh g−1, near to the theoretical discharge capacity. In the cycle performance, the capacity fade of Li3V2(PO4)3 is dependent on the cut-off voltage and the preparation method.  相似文献   

5.
Spherical Li3V2(PO4)3/C composites are synthesized by a soft chemistry route using hydrazine hydrate as the spheroidizing medium. The electrochemical properties of the materials are investigated by galvanostatic charge-discharge tests, cyclic voltammograms and electrochemical impedance spectrum. The porous Li3V2(PO4)3/C spheres exhibit better electrochemical performances than the solid ones. The spherical porous Li3V2(PO4)3/C electrode shows a high discharge capacity of 129.1 and 125.6 mAh g−1 between 3.0 and 4.3 V, and 183.8 and 160.9 mAh g−1 between 3.0 and 4.8 V at 0.2 and 1 C, respectively. Even at a charge-discharge rate of 15 C, this material can still deliver a discharge capacity of 100.5 and 121.5 mAh g−1 in the potential regions of 3.0-4.3 V and 3.0-4.8 V, respectively. The excellent electrochemical performance can be attributed to the porous structure, which can make the lithium ion diffusion and electron transfer more easily across the Li3V2(PO4)3/electrolyte interfaces, thus resulting in enhanced electrode reaction kinetics and improved electrochemical performance.  相似文献   

6.
In this work, we have synthesized monoclinic Li3V2(PO4)3 nanobelts via a single-step, solid-state reaction process in a molten hydrocarbon. The as-prepared Li3V2(PO4)3 nanoparticles have a unique nanobelt shape and are ∼50-nm thick. When cycled in a voltage range between 3.0 V and 4.3 V at a 1C rate, these unique Li3V2(PO4)3 nanobelts demonstrate a specific discharge capacity of 131 mAh g−1 (which is close to the theoretical capacity of 132 mAh g−1) and stable cycling characteristics.  相似文献   

7.
Li3V2(PO4)3, Li3V2(PO4)3/C and Li3V2(PO4)3/(Ag + C) composites as cathodes for Li ion batteries are synthesized by carbon-thermal reduction (CTR) method and chemical plating reactions. The microstructure and morphology of the compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Li3V2(PO4)3/(Ag + C) particles are 0.5-1 μm in diameters. As compared to Li3V2(PO4)3, Li3V2(PO4)3/C, the Li3V2(PO4)3/(Ag + C) composite cathode exhibits high discharge capacity, good cycle performance (140.5 mAh g−1 at 50th cycle at 1 C, 97.3% of initial discharge capacity) and rate behavior (120.5 mAh g−1 for initial discharge at 5 C) for the fully delithiated (3.0-4.8 V) state. Electrochemical impedance spectroscopy (EIS) measurements show that the carbon and silver co-modification decreases the charge transfer resistance of Li3V2(PO4)3/(Ag + C) cathode, and improves the conductivity and boosts the electrochemical performance of the electrode.  相似文献   

8.
Plate-like Li3V2(PO4)3/C composite is synthesized via a solution route followed by solid-state reaction. The Li3V2(PO4)3/C plates are 40-100 nm in thicknesses and 2-10 μm in lengths. TEM images show that a uniform carbon layer with a thickness of 5.3 nm presents on the surfaces of Li3V2(PO4)3 plates. The apparent Li-ion diffusion coefficient of the plate-like Li3V2(PO4)3/C is calculated to be 2.7 × 10−8 cm2 s−1. At a charge-discharge rate of 3 C, the plate-like Li3V2(PO4)3/C exhibits an initial discharge capacity of 125.2 and 133.1 mAh g−1 in the voltage ranges of 3.0-4.3 and 3.0-4.8 V, respectively. After 500 cycles, the electrodes still can deliver a discharge capacity of 111.8 and 97.8 mAh g−1 correspondingly, showing a good cycling stability.  相似文献   

9.
A synthesis of Li3V2(PO4)3 being a potential cathode material for lithium ion batteries was attempted via a glass-ceramic processing. A glass with the composition of 37.5Li2O-25V2O5-37.5P2O5 (mol%) was prepared by a melt-quenching method and precursor glass powders were crystallized with/without 10 wt% glucose in N2 or 7%H2/Ar atmosphere. It was found that heat treatments with glucose at 700 °C in 7%H2/Ar can produce well-crystallized Li3V2(PO4)3 in the short time of 30 min. The battery performance measurements revealed that the precursor glass shows the discharge capacity of 14 mAh g−1 at the rate of 1 μA cm−2 and the glass-ceramics with Li3V2(PO4)3 prepared with glucose at 700 °C in 7%H2/Ar show the capacities of 117-126 mAh g−1 (∼96% of the theoretical capacity) which are independent of heat treatment time. The present study proposes that the glass-ceramic processing is a fast synthesizing route for Li3V2(PO4)3 crystals.  相似文献   

10.
Li3V2(PO4)3 and Li3V2(PO4)3/C powders are prepared by ultrasonic spray pyrolysis from spray solutions with and without sucrose. The precursor powders have a spherical shape and the crystal structure of V2O3 irrespective of the concentration of sucrose in the spray solution. The powders post-treated at 700 °C have the pure crystal structure of the Li3V2(PO4)3 phase irrespective of the concentration of sucrose in the spray solution. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a non-spherical shape and hard aggregation. However, the Li3V2(PO4)3/C powders prepared from the spray solution with sucrose have a spherical shape and non-aggregation characteristics. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a low initial discharge capacity of 122 mAh g−1. However, the Li3V2(PO4)3/C powders prepared from the spray solutions with 0.1, 0.3, and 0.5 M sucrose have initial discharge capacities of 141, 130, and 138 mAh g−1, respectively. After 25 cycles, the discharge capacities of the powders formed from the spray solutions with and without 0.1 M sucrose are 70% and 71% of the initial discharge capacities, respectively.  相似文献   

11.
Na-doped Li3−xNaxV2(PO4)3/C (x = 0.00, 0.01, 0.03, and 0.05) compounds have been prepared by using sol-gel method. The Rietveld refinement results indicate that single-phase Li3−xNaxV2(PO4)3/C with monoclinic structure can be obtained. Among three Na-doped samples and the undoped one, Li2.97Na0.03V2(PO4)3/C sample has the highest electronic conductivity of 6.74 × 10−3 S cm−1. Although the initial specific capacities for all Na-doped samples have no much enhancement at the current rate of 0.2 C, both cycle performance and rate capability have been improved. At the 2.0 C rate, Li2.97Na0.03V2(PO4)3/C presents the highest initial capacity of 118.9 mAh g−1 and 12% capacity loss after 80 cycles. The partial substitution of Li with Na (x = 0.03) is favorable for electrochemical rate and cyclic ability due to the enlargement of Li3V2(PO4)3 unit cells, optimizing the particle size and morphology, as well as resulting in a higher electronic conductivity.  相似文献   

12.
Indium oxide (In2O3) coating on Pt, as an electrode of thin film lithium battery was carried out by using cathodic electrochemical synthesis in In2(SO4)3 aqueous solution and subsequently annealing at 400 °C. The coated specimens were characterized by X-ray photoelectron spectroscopy (XPS) for chemical bonding, X-ray diffraction (XRD) for crystal structure, scanning electron microscopy (SEM) for surface morphology, cyclic voltammetry (CV) for electrochemical properties, and charging/discharging test for capacity variations. The In2O3 coating film composed of nano-sized particles about 40 nm revealing porous structure was used as the anode of a lithium battery. During discharging, six lithium ions were firstly reacted with In2O3 to form Li2O and In, and finally the Li4.33In phase was formed between 0.7 and 0.2 V, revealing the finer particles size about 15 nm. The reverse reaction was a removal of Li+ from Li4.33In phase at different oxidative potentials, and the rates of which were controlled by the thermodynamics state initially and diffusion rate finally. Therefore, the total capacity was increased with decreasing current density. However, the cell delivering a stable and reversible capacity of 195 mAh g−1 between 1.2 and 0.2 V at 50 μA cm−2 may provide a choice of negative electrode applied in thin film lithium batteries.  相似文献   

13.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1.  相似文献   

14.
In order to search for cathode materials with better performance, Li3(V1−xMgx)2(PO4)3 (0, 0.04, 0.07, 0.10 and 0.13) is prepared via a carbothermal reduction (CTR) process with LiOH·H2O, V2O5, Mg(CH3COO)2·4H2O, NH4H2PO4, and sucrose as raw materials and investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM) and electrochemical impedance spectrum (EIS). XRD shows that Li3(V1−xMgx)2(PO4)3 (x = 0.04, 0.07, 0.10 and 0.13) has the same monoclinic structure as undoped Li3V2(PO4)3 while the particle size of Li3(V1−xMgx)2(PO4)3 is smaller than that of Li3V2(PO4)3 according to SEM images. EIS reveals that the charge transfer resistance of as-prepared materials is reduced and its reversibility is enhanced proved by the cyclic votammograms. The Mg2+-doped Li3V2(PO4)3 has a better high rate discharge performance. At a discharge rate of 20 C, the discharge capacity of Li3(V0.9Mg0.1)2(PO4)3 is 107 mAh g−1 and the capacity retention is 98% after 80 cycles. Li3(V0.9Mg0.1)2(PO4)3//graphite full cells (085580-type) have good discharge performance and the modified cathode material has very good compatibility with graphite.  相似文献   

15.
To prepare a high-capacity cathode material with improved electrochemical performance for lithium rechargeable batteries, Co3(PO4)2 nanoparticles are coated on the surface of powdered Li[Co0.1Ni0.15Li0.2Mn0.55]O2, which is synthesized by a simple combustion method. The coated powder prepared under proper conditions for Co3(PO4)2 content and annealing temperature shows an optimum coating layer that consists of a LixCoPO4 phase formed by reaction with lithium impurities during heat treatment. A sample coated with 3 wt.% Co3(PO4)2 and annealed at 800 °C proves to be the best in terms of specific capacity, cycle performance and rate capability. Thermal stability is also enhanced by the coating, as demonstrated a decrease in the onset temperature and/or the heat generated during thermal runaway.  相似文献   

16.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   

17.
9LiFePO4·Li3V2(PO4)3/C is synthesized via a carbon thermal reaction using petroleum coke as both reduction agent and carbon source. The as-prepared material is not a simple mixture of LiFePO4 (LFP) and Li3V2(PO4)3 (LVP), but a composite possessing two phases: one is V-doped LFP and the other is Fe-doped LVP. The typical structure enhances the electrical conductivity of the composite and improves the electrochemical performances. The first discharge capacity of 9LFP·LVP/C in 18650 type cells is 168 mAh g−1 at 1 C (1 C9LFP·LVP/C = 166 mA g−1), and exhibits high reversible discharge capacity of 125 mAh g−1 at 10 C even after 150 cycles. At the temperature of −20 °C, the reversible capacity of 9LFP·LVP/C can maintain 75% of that at room temperature.  相似文献   

18.
A nanocrystalline Li4Ti5O12-TiO2 duplex phase has been synthesized by a simple basic molten salt process (BMSP) using an eutectic mixture of LiNO3-LiOH-Li2O2 at 400-500 °C. The microstructure and morphology of the Li4Ti5O12-TiO2 product are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sample prepared by heat-treating at 300 °C for 3 h (S-1) reveals dense agglomerates of ultra-fine nanocrystalline Li4Ti5O12; with heat treatment at 400 °C for 3 h (S-2), there is a duplex crystallite size (fine < 10 nm, and coarse > 20 nm) of Li4Ti5O12-TiO2; at 500 °C for 3 h (S-3), a much coarser and less-dense distribution of lithium titanate (crystallite size ∼15-30 nm) is observed. According to the results of electrochemical testing, the S-2 sample shows initial discharge capacities of 193 mAh g−1 at 0.2 C, 168 mAh g−1 at 0.5 C, 146 mAh g−1 at 1 C, 135 mAh g−1 at 2 C, and 117 mAh g−1 at 5 C. After 100 cycles, the discharge capacity is 138 mAh g−1 at 1 C with a capacity retention of 95%. The S-2 sample yields the best electrochemical performance in terms of charge-discharge capacity and rate capability compared with other samples. Its superior electrochemical performance can be mainly attributed to the duplex crystallite structure, composed of fine (<10 nm) and coarse (>20) nm nanoparticles, where lithium ions can be stored within the grain boundary interfaces between the spinel Li4Ti5O12 and the anatase TiO2.  相似文献   

19.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

20.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号