首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfonated organosilane functionalized graphene oxides (SSi-GO) synthesized through the grafting of graphene oxide (GO) with 3-mercaptopropyl trimethoxysilane and subsequent oxidation have been used as a filler in sulfonated poly(ether ether ketone) (SPEEK) membranes. The incorporation of SSi-GOs greatly increases the ion-exchange capacity (IEC), water uptake, and proton conductivity of the membrane. With well-controlled contents of SSi-GOs, the composite membranes exhibit higher proton conductivity and lower methanol permeability than Nafion® 112 and Nafion® 115, making them particularly attractive as proton exchange membranes (PEMs) for direct methanol fuel cells (DMFC). The composite membrane with optimal SSi-GOs content exhibit over 38 and 17% higher power densities, respectively, than Nafion® 112 and Nafion® 115 membranes in DMFCs, offering the possibilities to reduce the DMFC membrane cost significantly while keeping high-performance.  相似文献   

2.
A novel multilayer membrane for the proton exchange membrane fuel cell (PEMFC) was developed. Nafion was dispersed uniformly onto both sides of the sulfonated polyimide (SPI) membrane. The Nafion/SPI/Nafion composite membrane was prepared by immersing the SPI into the Nafion-containing casting solution. Through immersing both membranes into the Fenton solution at 80 °C for 0.5 h for an accelerated ex situ test, chromatographic analysis of the water evacuated from the cathode and the anode of the cells and a durability test of a single proton exchange membrane fuel cells, it was proved that the stability of the composite membrane has been greatly improved by adding the Nafion layer compared with the SPI membrane. The fuel cell performance with the SPI and Nafion/SPI/Nafion membranes was similar to the performance with the commercial product Nafion® NRE-212 membrane at 80 °C.  相似文献   

3.
The electrospinning approach is an easy and useful method to fabricate porous supports with tailored properties for the preparation of impregnated membranes with enhanced characteristics. Therein, this technique was used to obtain polyvinyl alcohol (PVA) nanofiber mats in which Nafion® polymer was infiltrated. These Nafion/PVA membranes were characterized in their mechanical properties, proton conductivity and fuel cell performance. Conductivity of the composite membranes was below the showed by pristine Nafion® due to the non-ionic conducting behaviour of the PVA phase, although the incorporation of the PVA nanofibers strongly reinforced the mechanical properties of the membranes. Measurements carried out in a single cell fed with H2/Air confirmed the high performance exhibited by a 19 μm thick nanofiber reinforced membrane owing to its low ionic resistance. These reasons make ultrathin (<20 μm) Nafion/PVA composite membranes promising candidates as low cost ion-exchange membranes for fuel cell applications.  相似文献   

4.
A self-humidifying composite membrane based on Nafion® hybrid with SiO2 supported sulfated zirconia particles (SiO2–SZ) was fabricated and investigated for fuel cell applications. The bi-functional SiO2–SZ particles, possessing hygroscopic property and high proton conductivity, were homemade and as the additive incorporated into our composite membrane. X-ray diffraction (XRD) and Fourier infrared spectrum (FT-IR) techniques were employed to characterize the structure of SiO2–SZ particles. Scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were conducted to study the morphology of composite membrane. To verify the advantages of Nafion®/SiO2–SZ composite membrane, the IEC value, water uptake, proton conductivity, single cell performance and areal resistance were compared with Nafion®/SiO2 membrane and recast Nafion® membrane. The single cell employing our Nafion®/SiO2–SZ membrane exhibited the highest peak power density of 0.98 W cm−2 under dry operation condition in comparison with 0.74 W cm−2 of Nafion®/SiO2 membrane and 0.64 W cm−2 of recast Nafion® membrane, respectively. The improved performance was attributed to the introduction of SiO2–SZ particles, whose high proton conductivity and good water adsorbing/retaining function under dry operation condition, could facilitate proton transfer and water balance in the membrane.  相似文献   

5.
A novel functional organoclay was prepared using POP-backboned quaternary ammonium salts that contained sulfonic acid (–SO3H) to improve the performance of Nafion® membranes used in direct methanol fuel cells. Modified layered silicate clays were cast with Nafion®. The performance of the Nafion®/MMT-POPD400-PS composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The methanol permeability of the composite membrane declined as the MMT-POPD400-PS content increased. The MMT was functionalized using organic sulfonic acid to enhance proton conductivity. The proton conductivity of the composite membrane exceeded that of pristine Nafion®. These effects essentially improved the single-cell performance of DMFC.  相似文献   

6.
The Nafion/polytetrafluoroethylene (Nafion/PTFE) composite membrane is fabricated by a solution-spray process. The performance and morphology of the composite membrane are studied in terms of the mechanical properties, conductivity, and permeability. The results of TEM and X-ray studies show that the morphologies of crystalline and ion cluster of the perfluorosulfonated acid (PFSA) in composite membrane are apparently similar to that of Nafion® NR211 membrane. The composite membrane has higher stiffness and strength and lower swelling than that of Nafion® NR211. The conductivity at 85 °C of 0.375 S cm−1 is relatively high in comparison to that of 0.300 S cm−1 for Nafion® NR211. The 20 kW stack with the composite membranes is evaluated. The mean single cell voltage is 0.67 V @1000 mA cm−2. The stack has behaved performance uniformity and steadily operated under low humidifying condition. In consideration of the integration of complex structure and perfect morphology, the solution-spray process is feasible for composite proton exchange membrane manufacture.  相似文献   

7.
Membrane electrode assemblies (MEAs) for fuel cell applications consist of electron conductive support materials, proton conductive ionomer, and precious metal nanoparticles to enhance the catalytic activity towards H2 oxidation and O2 reduction. An optimized connection of all three phases is required to obtain a high noble metal utilization, and accordingly a good performance. Using polyaniline (PANI) as an alternative support material, the generally used ionomer Nafion® could be replaced in the catalyst layer. PANI has the advantage to be electron and proton conductive at the same time, and can be used as a catalyst support as well. In this study, a new technique building up alternating layers of PANI supported catalyst and single-walled carbon nanotubes (SWCNT) supported catalyst is introduced. Multilayers of PANI and SWCNT catalysts are used on the cathode side, whereas the anode side is composed of commercial platinum/carbon black catalyst and Nafion®, applied by an airbrush. No additional Nafion® ionomer is used for proton conductivity of the cathode. The so called spray coating method results in high power densities up to 160 mW cm−2 with a Pt loading of 0.06 mg cm−2 at the cathode, yielding a Pt utilization of 2663 mW mgPt−1. As well as PANI, supports of SWCNTs have the advantage to have a fibrous structure and additional, they provide high electron conductivity. The combination of the new technique and the fibrous 1-dimensional support materials leads to a porous 3-dimensional electrode network which could enhance the gas transport through the electrode as well as the Pt utilization. The spray coating method could be upgraded to an in-line process and is not restricted to batch production.  相似文献   

8.
Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol–gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm−1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm−2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm−2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.  相似文献   

9.
This work has been focused on the characterization of the methanol permeability and fuel cell performance of composite Nafion/PVA membranes in function of their thickness, which ranged from 19 to 97 μm. The composite membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The resistance to methanol permeation of the Nafion/PVA membranes shows a linear variation with the thickness. The separation between apparent and true permeability permits to give an estimated value of 4.0 × 10−7 cm2 s−1 for the intrinsic or true permeability of the bulk phase at the composite membranes. The incorporation of PVA nanofibers causes a remarkable reduction of one order of magnitude in the methanol permeability as compared with pristine Nafion® membranes. The DMFC performances of membrane-electrode assemblies prepared from Nafion/PVA and pristine Nafion® membranes were tested at 45, 70 and 95 °C under various methanol concentrations, i.e., 1, 2 and 3 M. The nanocomposite membranes with thicknesses of 19 μm and 47 μm reached power densities of 211 mW cm−2 and 184 mW cm−2 at 95 °C and 2 M methanol concentration. These results are comparable to those found for Nafion® membranes with similar thickness at the same conditions, which were 210 mW cm−2 and 204 mW cm−2 respectively. Due to the lower amount of Nafion® polymer present within the composite membranes, it is suggested a high degree of utilization of Nafion® as proton conductive material within the Nafion/PVA membranes, and therefore, significant savings in the consumed amount of Nafion® are potentially able to be achieved. In addition, the reinforcement effect caused by the PVA nanofibers offers the possibility of preparing membranes with very low thickness and good mechanical properties, while on the other hand, pristine Nafion® membranes are unpractical below a thickness of 50 μm.  相似文献   

10.
Nafion® conductivity in a proton exchange membrane fuel cell (PEMFC) with the fuel stream containing ammonia is mainly affected by the ammonium ion composition and operating conditions. In this study, the effect of ammonium ion distribution on Nafion conductivity was investigated for the first time. The conductivities of two kinds of contaminated membranes having uniform and non-uniform ammonium ion distributions were studied. To simulate a membrane with a well-defined ammonium ion concentration profile, three individual Nafion membranes containing known amounts of ammonium ions were physically stacked together. The uniform and non-uniform cases represented membranes having three layers with the same yN+H4 or step changes in concentration, respectively. Under fuel cell operations, the conductivities of non-uniformly poisoned membranes were ca. 1.07-1.86 times larger than those of uniformly poisoned membranes, depending on humidity, contamination level, and ammonium ion distribution. Consequently, the performance prediction of a cationic-poisoned PEMFC needs to consider any concentration gradients that may exist in MEA. The liquid-phase conductivities of composite membranes were also studied and the results show that conductivity measurements performed in deionized water are not representative of what exists under fuel cell conditions due to rapid redistribution of ions in the Nafion via the liquid phase.  相似文献   

11.
Sulfonated-silica/Nafion® composite membranes were prepared in a sol–gel reaction of (3-Mercaptopropyl)trimethoxysilane (SH-silane) followed by solution casting, and then oxidated using 10 wt% H2O2 solution. The chemical and physical properties of the composite membranes were characterized by using FT-IR, XPS, 29Si NMR and SEM analyses. Experimental results indicated that the optimum oxidation condition was 60 °C for 1 h. The performance of the silica–SO3H/Nafion® composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The silica–SO3H/Nafion® composite membranes have a higher selectivity (C/P ratio = 26,653) than that of pristine Nafion® (22,795), perhaps because of their higher proton conductivity and lower methanol permeability. The composite membrane with 0.6 wt% silica–SO3H/Nafion® performed better than pristine Nafion®. The current densities were measured as 62.5 and 70 mA cm−2 at a potential of 0.2 V with a composite membrane that contained 0 and 0.6 wt% silica–SO3H, respectively. The cell performance of the DMFC was improved by introducing silica–SO3H. The composite membrane with 0.6 wt% of silica–SO3H yielded the maximum power density of 15.18 mW cm−2. The composite membranes are suitable for DMFC applications with high selectivity.  相似文献   

12.
Commercial Nafion®-115 (trademark registered to DuPont) membranes were modified by in situ polymerized phenol formaldehyde resin (PFR) to suppress methanol crossover, and SO3 groups were introduced to PFR by post-sulfonatation. A series of membranes with different sulfonated phenol formaldehyde resin (sPFR) loadings have been fabricated and investigated. SEM-EDX characterization shows that the PFR was well dispersed throughout the Nafion® membrane. The composite membranes have a similar or slightly lower proton conductivity compared with a native Nafion® membrane, but show a significant reduction in methanol crossover (the methanol permeability of sPFR/Nafion® composite membrane with 2.3 wt.% sPFR loading was 1.5 × 10−6 cm2 s−1, compared with the 2.5 × 10−6 cm2 s−1 for the native Nafion® membrane). In direct methanol fuel cell (DMFC) evaluation, the membrane electrode assembly (MEA) using a composite membrane with a 2.3 wt.% sPFR loading shows a higher performance than that of a native Nafion® membrane with 1 M methanol feed, and at higher methanol concentrations (5 M), the composite membrane achieved a 114 mW cm−2 maximum power density, while the maximum power density of the native Nafion® was only 78 mW cm−2.  相似文献   

13.
A novel double layer proton exchange membrane (PEM) comprising a layer of structurally modified chitosan, as a methanol barrier layer, coated on Nafion®112 was prepared and assessed for direct methanol fuel cell (DMFC) applications. Scanning electron microscope (SEM) micrographs of the designed membrane revealed a tight adherence between layers, which indicate the high affinity of opposite charged polyelectrolyte layers. Proton conductivity and methanol permeability measurements showed improved transport properties of the designed membrane compared to Nafion®117. Moreover, DMFC performance tests revealed a higher open circuit voltage and power density, as well as overall fuel cell efficiency for the double layer membrane in comparison with Nafion®117, especially at elevated methanol solution feed. The obtained results indicate the designed double layer membrane as a promising PEM for high-performance DMFC applications.  相似文献   

14.
Recast Nafion® composite membranes containing ZrO2–SiO2 binary oxides with different Zr/Si ratios are investigated for polymer electrolyte membrane fuel cells (PEMFCs) at temperatures above 100 °C. Fine particles of the ZrO2–SiO2 binary oxides, same as an inorganic filter, are synthesized from a sodium silicate and a carbonate complex of zirconium by a sol–gel technique. The composite membranes are prepared by blending a 10% (w/w) Nafion®-water dispersion with the inorganic compound. All composite membranes show higher water uptake than unmodified membranes, and the proton conductivity increases with increasing zirconia content at 80 °C. By contrast, the proton conductivity decreases with zirconia content for the composite membranes containing binary oxides at 120 °C. The composite membranes are tested in a 9-cm2 commercial single cell at both 80 °C and 120 °C in humidified H2/air under different relative humidity (RH) conditions. Composite membrane containing the ZrO2–SiO2 binary oxide (Zr/Si = 0.5) give the best performance of 610 mW cm−1 under conditions of 0.6 V, 120 °C, 50% RH and 2 atm.  相似文献   

15.
An improved solution-cast method is presented to prepare multi-wall carbon nanotubes (MWCNTs)/Nafion® reinforced membrane with different MWCNTs content (from 1 to 4 wt.%). MWCNTs were oxidized by H2O2 and sodium hydroxide (NaOH) was added into the MWCNTs/Nafion®/N,N-dimethylacetamide (DMAC) solution. The long-term stability of the resulting dispersions was much better than the unmodified dispersions. The as-cast membrane was observed by scanning electron microscope (SEM). The MWCNTs were uniformly dispersed in the Nafion® resin. The tensile strength and the elongation at break were greatly improved for the reinforced membranes compared to the recast Nafion® membranes (54 and 27%, respectively). The fuel cell performance of the reinforced membranes with different MWCNTs contents was also tested at 80 °C under fully humidified conditions. By comparing the mechanical properties, proton conductivity and fuel cell performance of the reinforced membranes, we concluded that the content of MWCNTs in the reinforced membranes should not exceed 3 wt.%. The MWCNTs/Nafion® reinforced membrane with 3 wt.% MWCNTs content showed the best mechanical characteristics and excellent fuel cell performance.  相似文献   

16.
Various spatially enlarged organoclays were prepared by using poly(oxyproplene)-backboned quaternary ammonium salts of various molecular weights Mw 230, 400 and 2000 as the intercalating agents for Na+-montmorillonite. The modified MMT was utilized to improve the compatibility with Nafion®. Sufficient interaction of the modified MMT with Nafion® was studied by using X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The performance of the Nafion®/m-MMT composite membranes for direct methanol fuel cell (DMFCs) was evaluated in terms of water uptake, ion exchange capacity (IEC), methanol permeability, proton conductivity, and cell performance. The methanol permeability of the composite membrane decreased with the increasing of m-MMT content. The proton conductivity of the membrane was lowered slightly from that of pristine Nafion® membrane. These results led to an essential improvement in the single-cell performance of DMFCs.  相似文献   

17.
The operational characteristics of the Nafion® 212 membrane (N212) are investigated and compared to that of Nafion® 112 (N112), in proton exchange membrane fuel cells (PEMFCs). The consequences of the membranes’ degradation are also investigated, after accelerated aging experiments using Fenton's method. Studies were performed by single cell polarization and impedance measurements, as a function of the cell and gas humidification temperatures and the gases pressures. Polarization curves show that the cell with N212 presents higher performance than that with N112, when operating under air cathode. FTIR analyses indicated that the chemical structure of Nafion does not change after accelerated degradation tests for both membranes. In spite of this, significant differences were observed in the morphology, mainly for N212. The electrochemical studies confirmed that the degradation of the membranes leads to a reduction of the fuel cell performance by increasing the gas crossover, mainly H2. Results also show that the N212 membrane may be less durable than N112.  相似文献   

18.
A novel functional poly(propylene oxide)-backboned diamine of Mw 400 (abbreviated as D400) was grafted with sulfonic acid (abbreviated as D400-PS) to improve the performance of Nafion® membranes in direct methanol fuel cells (DMFCs). The interaction of the D400-PS with Nafion® was studied by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The performance of the blend Nafion®/D400-PS membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The proton conductivity of the blend membrane was slightly reduced by rendering proton conductivity to D400 by functionalized with an organic sulfonic acid. The methanol permeability of the blend membrane decreased with increasing of D400-PS content. The methanol permeability of the blend Nafion®/D400-PS with the composition 3/1 (–SO3H/–NH2) was 1.02 × 10−6 cm2 S−1, which was reduced 50% compared to that of pristine Nafion®. The current densities that were measured with Nafion®/D400-PS blend membranes in the ratio 1/0 and 5/1 (–SO3H/–NH2), were 51 and 72 mA cm−2, respectively, at a potential of 0.2 V. Consequently, the blend Nafion®/D400-PS membranes critically improved the single-cell performance of DMFC.  相似文献   

19.
Various molecular weights of poly(propylene oxide) diamines oligomers/Nafion® acid–base blend membranes were prepared to improve the performance of Nafion® membranes in direct methanol fuel cells (DMFCs). The acid–base interactions were studied by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The performance of the blend membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The proton conductivity was slightly reduced by acid–base interaction. The methanol permeability of the blend D2000/Nafion® was 8.61 × 10−7 cm2 S−1, which was reduced 60% compared to that of pristine Nafion®. The cell performance of D2000/Nafion® blend membranes was enhanced significantly compared to pristine Nafion®. The current densities that were measured with Nafion® and 3.5 wt% D2000/Nafion® blend membranes were 62.5 and 103.5 mA cm−2, respectively, at a potential of 0.2 V. Consequently, the blend poly(propylene oxide) diamines oligomers/Nafion® membranes critically improved the single-cell performance of DMFC.  相似文献   

20.
Here we show preparation and characterization of a new type of composite membrane based on Nafion®/histidine modified carbon nanotube by imidazole groups (Im-CNT), for direct methanol fuel cell (DMFC) applications. Due to the presence of this imidazole-based amino acid on the surface of CNT, new electrostatic interactions can be formed in the interface of Nafion® and Im-CNT. Physical characteristics of these nanocomposite membranes are investigated by water uptake, methanol permeability, ion exchange capacity, proton conductivity, as well as fuel cell performance results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号