首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10−3 S cm−1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g−1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.  相似文献   

2.
Ceramic and polymeric solid electrolytes for lithium-ion batteries   总被引:1,自引:0,他引:1  
Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.  相似文献   

3.
The ternary [Li+]0.09[MePrPyr+]0.41[NTf2]0.50 room temperature ionic liquid was obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([MePrPyr+][NTf2]), and studied as an electrolyte for lithium-ion batteries. The graphite-lithium (C6Li) anode, working together with vinylene carbonate as an additive showed ca. 90% of its initial discharge capacity after 50 cycles. The addition of vinylene carbonate to the neat ionic liquid results in the formation of the protective coating (SEI) on both the lithium and graphite anodes. The SEI formation increases the rate of the charge transfer reaction as well as protects the anode from chemical passivation (corrosion). The graphite-lithium (C6Li) anode shows good cyclability and Coulombic efficiency in the presence of 10 wt.% of vinylene carbonate as an additive to the ionic liquid.  相似文献   

4.
The ternary [Li+][MPPip+][NTf2] ionic liquid, obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPipNTf2), was used as an electrolyte, and stable at the lithium or graphite-lithium anodes. The graphite-lithium (C6Li) anode showed good cyclability and Coulombic efficiency in the presence of a molecular additive (10 wt.% of vinylene carbonate, VC) to the ionic liquid. The electrode showed ca. 90% of its initial discharge capacity after 100 cycles. The addition of ethylene carbonate (EC) does not improve the cyclability of the anode to the same degree as that observed in the case of vinylene carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号