首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core-shell LiFePO4@C composites were synthesized successfully from FePO4/C precursor using the polyvinyl alcohol (PVA) as the reducing agent, followed by a chemical vapor deposition (CVD) assisted solid-state reaction in the presence of Li2CO3. Some physical and chemical properties of the products were characterized by X-ray powder diffraction (XRD), Raman, SEM, TEM techniques. The effect of morphology and electrochemical properties of the composites were thoroughly investigated. XRD patterns showed that LiFePO4 has an order olivine structure with space group of Pnma. TEM micrographs exhibited that the LiFePO4 particles encapsulated with 3-nm thick carbon shells. The powders were homogeneous with grain size of about 0.8 μm. Compared with those synthesized by traditional organic carbon source mixed method, LiFePO4@C composite synthesized by CVD method exhibited better discharge capacity at initial 155.4 and 135.8 mAh g−1 at 0.1C and 1C rate, respectively. It is revealed that the carbon layer coated on the surface of LiFePO4 and the amorphous carbon wrapping and connecting the particles enhanced the electronic conductivity and rate performances of the cathode materials.  相似文献   

2.
A carbon-coated nanocrystalline LiFePO4 cathode material was synthesized by pyrolysis of polyacrylate precursor containing Li+, Fe3+ and PO4. The powder X-ray diffraction (XRD) and high-resolution TEM micrographs revealed that the LiFePO4/C composite as prepared has a core-shell structure with pure olivine LiFePO4 crystallites as cores and intimate carbon coating as a shell layer. Between the composite particulates, there exists a carbon matrix binding the nanocrystallites together into micrometer particles. The electrochemical measurements demonstrated that the LiFePO4/C composite with an appropriate carbon content can deliver a very high discharge capacity of 157 mAh g−1 (>92% of the theoretical capacity of LiFePO4) with 95% of its initial capacity after 30 cycles. Since this preparation method uses less costly materials and operates in mild synthetic conditions, it may provide a feasible way for industrial production of the LiFePO4/C cathode materials for the lithium-ion batteries.  相似文献   

3.
The olivine structured LiMnPO4/C composites were prepared by a combination of spray pyrolysis and wet ballmilling using different conductive carbons: acetylene black and two types of ketjen black. The ketjen black with a larger specific surface area and dibutyl phthalate absorption number was found to be more preferable compared with other conductive carbons studied in this work. The LiMnPO4/C composite cathode with ketjen black, which has the largest specific surface area, exhibited the largest discharge capacity compared with other LiMnPO4/C composites. The largest discharge capacity delivered by this composite cathode was 166 mAh g−1 at 0.05 C, which is about 97% of the theoretical value for LiMnPO4. The performance improvement by using this conductive carbon was attributed to its extremely large specific surface area and high ability to absorb the electrolyte, which provide enhanced charge transfer and lithium ion transport in the composite cathode structure.  相似文献   

4.
LiFePO4/C composite cathode material was prepared by carbothermal reduction method, which uses NH4H2PO4, Li2CO3 and cheap Fe2O3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO4 composites showed a high electrochemical capacity of 159.3 mAh g−1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.  相似文献   

5.
A new type of LiFePO4/C composite surrounded by a web containing both amorphous and crystalline carbon phases was synthesized by incorporating malonic acid as a carbon source using a high temperature solid-state method. SEM, TEM/SAED/EDS and HRTEM were used to analyze surface morphology and confirmed for the first time that crystalline carbon was present in LiFePO4/C composites. The composite was effective in enhancing the electrochemical properties such as capacity and rate capability, because its active component consists of nanometer-sized particles containing pores with a wide range of sizes. An EDS elemental map showed that carbon was uniformly distributed on the surface of the composite crystalline particles. TEM/EDS results clearly show a dark region that is LiFePO4 with a trace of carbon and a gray region that is carbon only. To evaluate the materials’ electrochemical properties, galvanostatic cycling and conductivity measurements were performed. The best cell performance was delivered by the material coated with 60 wt.% malonic acid, which delivered first cycle discharge capacity of 149 mAh g−1 at a C/5 rate and sustained 222 cycles at 80% of capacity retention. When carboxylic acid was used as a carbon source to produce LiFePO4, overall conductivity increased from 10−5 to 10−4 S cm−1, since particle growth was prevented during the final sintering process.  相似文献   

6.
Phospho-olivine LiFePO4 cathode materials were prepared by hydrothermal reaction at 150 °C. Carbon black was added to enhance the electrical conductivity of LiFePO4. LiFePO4-C powders (0, 3, 5 and 10 wt.%) were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). LiFePO4-C/solid polymer electrolyte (SPE)/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1 mA cm−2 in a range between 2.5 and 4.3 V vs. Li/Li+, cyclic voltammetry (CV) and ac impedance spectroscopy. The results showed that initial discharge capacity of LiFePO4 was 104 mAh g−1. The discharge capacity of LiFePO4-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh g−1 at the first cycle and 127 mAh g−1 after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO4-C/SPE/Li cells was better than that of LiFePO4/SPE/Li cells.  相似文献   

7.
LiFePO4 as a cathode material for rechargeable lithium batteries was prepared by hydrothermal process at 170 °C under inert atmosphere. The starting materials were LiOH, FeSO4, and (NH4)2HPO4. The particle size of the obtained LiFePO4 was 0.5 μm. The electrochemical properties of LiFePO4 were characterized in a mixed solvent of ethylene carbonate and diethyl carbonate (1:1 in volume) containing 1.0 mol dm−3 LiClO4. The hydrothermally synthesized LiFePO4 exhibited a discharge capacity of 130 mA h g−1, which was smaller than theoretical capacity (170 mA h g−1). The annealing of LiFePO4 at 400 °C in argon atmosphere was effective in increasing the discharge capacity. The discharge capacity of the annealed LiFePO4 was 150 mA h g−1.  相似文献   

8.
The goal of this research was to study the effect of various polymer-containing precursors on the performance of LiFePO4/C composite. A coprecipitation method was applied to prepare a series of LiFePO4/C materials by calcinating amorphous LiFePO4 with various polymer compounds at 600 °C. The materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, particle size analysis, thermal analysis, BET specific surface area, Raman spectral analysis and electrochemical methods. The results showed that the structure of polymer precursors played an important role in improving the performance of LiFePO4/C composites. The residual carbon produced by the pyrolysis of polymers with functionalized aromatic groups exhibited a better capacity in the LiFePO4/C composites. A polyaromatic compound, e.g. polystyrene, with more functionalized aromatic groups displayed improved performance because its decomposition temperature was close to the temperature of the LiFePO4 phase transformation, which resulted in fine particle size and uniform carbon distribution on the composite surface. According to Raman spectral analysis, polystyrene with more aromatic groups has a lower ID/IG and sp3/sp2 peak ratio indicating more highly graphite-like carbon formation during polymer pyrolysis and exhibited a better capacity.  相似文献   

9.
Cl-doped LiFePO4/C cathode materials were synthesized through a carbothermal reduction route, and the microstructure and electrochemical performances were systematically studied. Cl-doped LiFePO4/C cathode materials presented a high discharge capacity of ∼90 mAh g−1 at the rate of 20 C (3400 mA g−1) at room temperature. Electrochemical impedance spectroscopy and cyclic voltamperometry indicated the optimized electrochemical reaction and Li+ diffusion in the bulk of LiFePO4 due to Cl-doping. The improved Li+ diffusion capability is attributed to the microstructure modification of LiFePO4 via Cl-doping.  相似文献   

10.
Porous nanostructured LiFePO4 powder with a narrow particle size distribution (100–300 nm) for high rate lithium-ion battery cathode application was obtained using an ethanol based sol–gel route employing lauric acid as a surfactant. The synthesized LiFePO4 powders comprised of agglomerates of crystallites <65 nm in diameter exhibiting a specific surface area ranging from 8 m2 g−1 to 36 m2 g−1 depending on the absence or presence of the surfactant. The LiFePO4 obtained using lauric acid resulted in a specific capacity of 123 mAh g−1 and 157 mAh g−1 at discharge rates of 10C and 1C with less than 0.08% fade per cycle, respectively. Structural and microstructural characterization were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray (EDX) analysis while electronic conductivity and specific surface area were determined using four-point probe and N2 adsorption techniques.  相似文献   

11.
One-dimensional (1D) nanosize electrode materials of lithium iron phosphate (LiFePO4) nanowires and Co3O4–carbon nanotube composites were synthesized by the hydrothermal method. The as-prepared 1D nanostructures were structurally characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. We tested the electrochemical properties of LiFePO4 nanowires as cathode and Co3O4–carbon nanotubes as anode in lithium-ion cells, via cyclic voltammetry and galvanostatic charge/discharge cycling. LiFePO4 nanorod cathode demonstrated a stable performance over 70 cycles, with a remained specific capacity of 140 mAh g−1. Nanocrystalline Co3O4–carbon nanotube composite anode exhibited a reversible lithium storage capacity of 510 mAh g−1 over 50 cycles. 1D nanostructured electrode materials showed strong potential for lithium-ion batteries due to their good electrochemical performance.  相似文献   

12.
LiFePO4/C composite cathode materials were synthesized by carbothermal reduction method using inexpensive FePO4 as raw materials and glucose as conductive additive and reducing agent. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and particle size analysis. Cyclic voltammetry (CV) and charge/discharge cycling performance were used to characterize their electrochemical properties. The results showed that the LiFePO4/C composite synthesized at 650 °C for 9 h exhibited the most homogeneous particle size distribution. Residual carbon during processing was coated on LiFePO4, resulting in the enhancement of the material's electronic properties. Electrochemical measurements showed that the discharge capacity first increased and then decreased with the increase of synthesis temperature. The optimal sample synthesized at 650 °C for 9 h exhibited a highest initial discharge capacity of 151.2 mA h g−1 at 0.2 C rate and 144.1 mA h g−1 at 1 C rate with satisfactory capacity retention rate.  相似文献   

13.
Chemical lithiation with LiI in acetonitrile was performed for amorphous FePO4 synthesized from an equimolar aqueous suspension of iron powder and an aqueous solution of P2O5. An orthorhombic LiFePO4 olivine structure was obtained by annealing a chemically lithiated sample at 550 °C for 5 h in Ar atmosphere. The average particle size remained at approximately 250 nm even after annealing. The lithium content in the sample was quantitatively confirmed by Li atomic absorption analysis and 57Fe Mössbauer spectroscopy. While an amorphous FePO4/carbon composite cathode has a monotonously decreasing charge–discharge profile with a reversible capacity of more than 140 mAh g−1, the crystallized LiFePO4/carbon composite shows a 3.4 V plateau corresponding to a two-phase reaction. This means that the lithium in the chemically lithiated sample is electrochemically active. Both amorphous FePO4 and the chemically lithiated and annealed crystalline LiFePO4 cathode materials showed good cyclability (more than 140 mAh g−1 at the 40th cycle) and good discharge rate capability (more than 100 mAh g−1 at 5.0 mA cm−2). In addition, the fast-charge performance was found to be comparable to that with LiCoO2.  相似文献   

14.
V-doped LiFePO4/C cathode materials were prepared through a carbothermal reduction route. The microstructure was characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The electrochemical Li+ intercalation performances of V-doped LiFePO4/C were compared with those of undoped one through galvanostatic intermittent titration technique, cyclic voltamperometry, and electrochemical impedance spectrum. V-doped LiFePO4/C showed a high discharge capacity of ∼70 mAh g−1 at the rate of 20 C (3400 mA g−1) at room temperature. The significantly improved high-rate charge/discharge capacity is attributed to the increase of Li+ ion “effective” diffusion capability.  相似文献   

15.
LiFePO4 cathode materials with distinct particle sizes were prepared by a planetary ball-milling method. The effects of particle size on the morphology, thermal stability and electrochemical performance of LiFePO4 cathode materials were investigated. The ball-milling method decreased particle size, thereby reducing the length of diffusion and improving the reversibility of the lithium ion intercalation/deintercalation. It is worth noting that the small particle sample prepared using malonic acid as a carbon source achieved a high capacity of 161 mAh g−1 at a 0.1 C rate and had a very flat capacity curve during the early 50 cycles. However, the big particle samples (∼400 nm) decayed more dramatically in capacity than the small particle size samples (∼200 nm) at high current densities. The improvement in electrode performance was mainly due to the fine particles, the small size distribution, and the increase in electronic conductivity as a result of carbon coating. The structure and morphology of the ground LiFePO4 samples were characterized with XRD, FE-SEM, TEM, EDS, and DSC techniques.  相似文献   

16.
Olivine-type LiFePO4 cathode materials were synthesized by a solid-state reaction method and ball-milling. The ball-milling time, heating time and heating temperature are optimized. A heating temperature higher than 700 °C resulted in the appearance of impurity phase Fe2P and growth of large particle, which was shown by high resolution X-ray diffraction and field emission scanning electron microscopy. The impurity phase Fe2P exhibited a considerable capacity loss at the 1st cycle and a gradual increase in discharge capacity upon cycling. Moreover, it exhibited an excellent high-rate capacity of 104 mAh g−1 at 3 C in spite of the large particle size. The optimum synthesis conditions for LiFePO4 were ball-milling for 24 h and heat-treatment at 600 °C for 3 h. LiFePO4/Li cells showed an enhanced cycling performance and a high discharge capacity of 160 mAh g−1 at 0.1 C.  相似文献   

17.
Carbon coated LiFePO4 (LiFePO4/C) with different contents of high electron conductive iron phosphide phase was synthesized by an aqueous sol–gel method in a reductive sintering atmosphere. Different synthesis parameters were used for adjusting the microstructure and phase compositions of the products. The effects of the carbon coating and iron phosphides on the electrochemical properties of the LiFePO4/C electrodes were studied by means of testing the discharge capacities at rates of 0.1–5C (1C = 170 mAh g−1) and analyzing the CV curves. The results show that carbon coating in a content of 1.5 wt.% derived from the carbon source of ethylene glycol greatly decreases the particle size of LiFePO4 in one order in the specific surface area, and significantly improves the rate capability of LiFePO4. The effect of the content of FeP on the capacity of the carbon coated LiFePO4 was different at different discharge rates. Increasing the content of FeP from 1.2 to 3.7 wt.% slightly decreases the capacity of LiFePO4/C at low discharge rate (0.1C and 1C), but obviously increases the capacity of LiFePO4/C when the discharge rate is increased to 5C. For the carbon free sample, even it also has 1.8 wt.% FeP, it still possesses poor capacity due to the large particle size of LiFePO4 and the lack of conductivity. And too much iron phosphides lowers the discharge capacity of the electrode since they are inert for the deinsertion/insertion of lithium ion.  相似文献   

18.
A novel preparation technique was developed for synthesizing carbon-coated LiFePO4 nanoparticles through a combination of spray pyrolysis (SP) with wet ball milling (WBM) followed by heat treatment. Using this technique, the preparation of carbon-coated LiFePO4 nanoparticles was investigated for a wide range of process parameters such as ball-milling time and ball-to-powder ratio. The effect of process parameters on the physical and electrochemical properties of the LiFePO4/C composite was then discussed through the results of X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the Brunauer-Emmet-Teller (BET) method and the use of an electrochemical cell of Li|1 M LiClO4 in EC:DEC = 1:1|LiFePO4. The carbon-coated LiFePO4 nanoparticles were prepared at 500 °C by SP and then milled at a rotating speed of 800 rpm, a ball-to-powder ratio of 40/0.5 and a ball-milling time of 3 h in an Ar atmosphere followed by heat treatment at 600 °C for 4 h in a N2 + 3% H2 atmosphere. SEM observation revealed that the particle size of LiFePO4 was significantly affected by the process parameters. Furthermore, TEM observation revealed that the LiFePO4 nanoparticles with a geometric mean diameter of 146 nm were coated with a thin carbon layer of several nanometers by the present method. Electrochemical measurement demonstrated that cells containing carbon-coated LiFePO4 nanoparticles could deliver markedly improved battery performance in terms of discharge capacity, cycling stability and rate capability. The cells exhibited first discharge capacities of 165 mAh g−1 at 0.1 C, 130 mAh g−1 at 5 C, 105 mAh g−1 at 20 C and 75 mAh g−1 at 60 C with no capacity fading after 100 cycles.  相似文献   

19.
The characterization of three-dimensional (3D) carbon foams coated with olivine structured lithium iron phosphate is reported for the first time. The LiFePO4 as cathode material for lithium ion batteries was prepared by a Pechini-assisted reversed polyol process. The coating has been successfully performed on commercially available 3D-carbon foams by soaking in aqueous solution containing lithium, iron salts and phosphates at 70 °C for 2-4 h. After drying-out, the composites were annealed at different temperatures in the range 600-700 °C for 15-20 min under nitrogen. The formation of the olivine-like structured LiFePO4 was confirmed by X-ray diffraction analysis performed on the powder prepared under similar conditions. The surface investigation of the prepared composites showed the formation of a homogeneous coating by LiFePO4 on the foams. The cyclic voltammetry curves of the composites show an enhancement of electrode reaction reversibility by decreasing the annealing temperature. The electrochemical measurements on the composites showed good performances delivering a discharge specific capacity of 85 mAh g−1 at a discharging rate of C/25 at room temperature.  相似文献   

20.
The freeze-drying method is proposed as an effective synthesis process for the obtaining of LiFePO4/C composites. The citric acid is used as a complexing agent and carbon source. After the low temperature annealing, the freeze-dried solution leads to a homogeneous carbon covered LiFePO4 sample. The chemical characterization of the material included ICP and elemental analysis, infrared spectroscopy, X-ray diffraction, magnetic measurements and thermal analysis. SEM and TEM microscopies indicate an aggregate morphology with tiny particles of lithium iron phosphate inside a carbon matrix. Impedance spectroscopy showed a 8.0 × 10−7 S cm−1 conductivity value. Cyclic voltammetry graphics displayed the two peaks corresponding to the Fe(II)/Fe(III) reaction and demonstrated the good reversibility of the material. The specific capacity value obtained at C/40 rate was 164 mAh g−1, with a slight decrease on greater C-rates reaching 146 mAh g−1 at C/1. The capacity retention study has evidenced good properties, with retention over 97% of the maximum values in the first 50 cycles, which allows an effective performance of the freeze-dried sample as cathodic material in lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号