首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-density Li4Ti5O12 powders comprising spherical particles are prepared by spray pyrolysis from a solution containing dimethylacetamide (drying control chemical additive) and citric acid and ethylene glycol (organic additives). The prepared powders have high discharge capacities and good cycle properties. The optimum concentration of dimethylacetamide is 0.5 M. The addition of dimethylacetamide to the polymeric spray solutions containing citric acid and ethylene glycol helps in the effective control of the morphology of the Li4Ti5O12 powders. At a constant current density of 0.17 mA g−1, the initial discharge capacities of the powders obtained from the spray solution with and without the organic additives are 171 and 167 mAh g−1, respectively.  相似文献   

2.
Spherical shape Cu–Sn alloy powders with fine size for lithium secondary battery were directly prepared by spray pyrolysis. The mean size and geometric standard deviation of the Cu–Sn alloy powders prepared at a temperature of 1100 °C were 0.8 μm and 1.2, respectively. The powders prepared at a temperature of 1100 °C with low flow rate of carrier gas as 5 l min−1 had main XRD peaks of Cu6Sn5 alloy and copper-rich Cu3Sn alloy phases. Cu and Sn components were well dispersed inside the submicron-sized alloy powders. The discharge capacities of the Cu6Sn5 alloy powders prepared at a flow rate of 5 l min−1 dropped from 485 to 313 mAh g−1 by the 20th cycle at a current density of 0.1 C. On the other hand, the discharge capacities of the Cu–Sn alloy powder prepared at a flow rate of 20 l min−1 dropped from 498 to 169 mAh g−1 by the 20th cycle at a current density of 0.1 C.  相似文献   

3.
Li4Ti5O12/tin phase composites are successfully prepared by cellulose-assisted combustion synthesis of Li4Ti5O12 matrix and precipitation of the tin phase. The effect of firing temperature on the particulate morphologies, particle size, specific surface area and electrochemical performance of Li4Ti5O12/tin oxide composites is systematically investigated by SEM, XRD, TG, BET and charge-discharge characterizations. The grain growth of tin phase is suppressed by forming composite with Li4Ti5O12 at a calcination of 500 °C, due to the steric effect of Li4Ti5O12 and chemical interaction between Li4Ti5O12 and tin oxide. The experimental results indicate that Li4Ti5O12/tin phase composite fired at 500 °C has the best electrochemical performance. A capacity of 224 mAh g−1 is maintained after 50 cycles at 100 mA g−1 current density, which is still higher than 195 mAh g−1 for the pure Li4Ti5O12 after the same charge/discharge cycles. It suggests Li4Ti5O12/tin phase composite may be a potential anode of lithium-ion batteries through optimizing the synthesis process.  相似文献   

4.
Spinel Li4Ti5O12 thin film anode material for lithium-ion batteries is prepared by pulsed laser deposition. Thin film anodes are deposited at ambient temperature, then annealed at three different temperatures under an argon gas flow and the influence of annealing temperatures on their electrochemical performances is studied. The microstructure and morphology of the films are characterized by XRD, SEM and AFM. Electrochemical properties of the films are evaluated by using galvanostatic discharge/charge tests, cyclic voltammetry and a.c. impedance spectroscopy. The results reveal that all annealed films crystallize and exhibit good cycle performance. The optimum annealing temperature is about 700 °C. The steady-state discharge capacity of the films is about 157 mAh g−1 at a medium discharge/charge current density of 10 μA cm−2. At a considerably higher discharge/charge current density of 60 μA cm−2 (about 3.45 C) the discharge capacity of the films remains steady at a relative high value (146 mAh g−1). The cycleability of the films is excellent. This implies that such films are suitable for electrodes to be used at high discharge/charge current density.  相似文献   

5.
Synthesis of the spinel lithium titanate Li4Ti5O12 by an alkoxide-free sol-gel method is described. This method yields highly pure and crystalline Li4Ti5O12 samples at relatively low temperature (850 °C) and via short thermal treatment (2 h). 6Li magic angle spinning nuclear magnetic resonance (MAS NMR) measurements on these samples were carried out at high magnetic field (21.1 T) and over a wide temperature range (295-680 K). The temperature dependence of the chemical shifts and integral intensities of the three 6Li resonances demonstrates the migration of lithium ions from the tetrahedral 8a to the octahedral 16c sites and the progressive phase transition from a spinel to a defective NaCl-type structure. This defective structure has an increased number of vacancies at the 8a site, which facilitate lithium diffusion through 16c → 8a → 16c pathways, hence providing an explanation for the reported increase in conductivity at high temperatures. Molecular dynamics simulations of the spinel oxides Li4+xTi5O12, with 0 ≤ x ≤ 3, were also performed with a potential shell model in the temperature range 300-700 K. The simulations support the conclusions drawn from the NMR measurements and show a significant timescale separation between lithium diffusion through 8a and 16c sites and that out of the 16d sites.  相似文献   

6.
Pristine and carbon-coated Li4Ti5O12 oxide electrodes are synthesized by a cellulose-assisted combustion technique with sucrose as organic carbon source and their low-temperature electrochemical performance as anodes for lithium-ion batteries are investigated. X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are applied to characterize the phase structure, composition, and morphology of the composites. It is found that the sequence of sucrose addition has significant effect on the phase formation of Li4Ti5O12. Carbon-coated Li4Ti5O12 is successfully prepared by coating the pre-crystallized Li4Ti5O12 phase with sucrose followed by thermal treatment. Electrochemical lithium insertion/extraction performance is evaluated by the galvanostatic charge/discharge tests, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), from room temperature (25 °C) to −20 °C. The carbon-coated composite anode materials show improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. Both of the two samples show fairly stable cycling performance at various temperatures, which is highly promising for practical applications in power sources of electric or electric-hybrid vehicles.  相似文献   

7.
Li3V2(PO4)3 and Li3V2(PO4)3/C powders are prepared by ultrasonic spray pyrolysis from spray solutions with and without sucrose. The precursor powders have a spherical shape and the crystal structure of V2O3 irrespective of the concentration of sucrose in the spray solution. The powders post-treated at 700 °C have the pure crystal structure of the Li3V2(PO4)3 phase irrespective of the concentration of sucrose in the spray solution. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a non-spherical shape and hard aggregation. However, the Li3V2(PO4)3/C powders prepared from the spray solution with sucrose have a spherical shape and non-aggregation characteristics. The Li3V2(PO4)3 powders prepared from the spray solution without sucrose have a low initial discharge capacity of 122 mAh g−1. However, the Li3V2(PO4)3/C powders prepared from the spray solutions with 0.1, 0.3, and 0.5 M sucrose have initial discharge capacities of 141, 130, and 138 mAh g−1, respectively. After 25 cycles, the discharge capacities of the powders formed from the spray solutions with and without 0.1 M sucrose are 70% and 71% of the initial discharge capacities, respectively.  相似文献   

8.
The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li4Ti5O12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm−2 with the cut-off voltages of 1.2–2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.  相似文献   

9.
Li2Ti6O13 has been prepared from Na2Ti6O13 by Li ion exchange in molten LiNO3 at 325 °C. Chemical analysis and powder X-ray diffraction study of the reaction product respectively indicate that total Na/Li exchange takes place and the Ti-O framework of the Na2Ti6O13 parent structure is kept under those experimental conditions. Therefore, Li2Ti6O13 has been obtained with the mentioned parent structure. An important change is that particle size is decreased significantly which is favoring lithium insertion. Electrochemical study shows that Li2Ti6O13 inserts ca. 5 Li per formula unit in the voltage range 1.5-1.0 V vs. Li+/Li, yielding a specific discharge capacity of 250 mAh g−1 under equilibrium conditions. Insertion occurs at an average equilibrium voltage of 1.5 V which is observed for oxides and titanates where Ti(IV)/Ti(III) is the active redox couple. However, a capacity loss of ca. 30% is observed due to a phase transformation occurring during the first discharge. After the first redox cycle a high reversible capacity is obtained (ca. 160 mAh g−1 at C/12) and retained upon cycling. Taking into consideration these results, we propose Li2Ti6O13 as an interesting material to be further investigated as the anode of lithium ion batteries.  相似文献   

10.
LiMn2O4 powders have been directly prepared by flame spray pyrolysis from an aqueous spray solution of the metal salts. The powders prepared at a low fuel gas flow rate (3 L min−1) comprise particles with a bimodal size distribution, i.e., submicron- and nanometer-sized particles, and have crystal structures of LiMn2O4 and Mn3O4 phases. However, the powders prepared at a high fuel gas flow rate (5 L min−1) comprise nanometer-sized particles and have pure crystal structure of LiMn2O4 phase. The powders comprising nanosized particles are well crystallized, and the particles have a polyhedral structure. The mean particle size of these powders is 27 nm. The powders prepared directly by flame spray pyrolysis comprise nanosized particles and have the pure crystal structure of LiMn2O4, irrespective of the amount of excess lithium in the precursor solution. The initial discharge capacities of these powders increase from 91 to 112 mAh g−1 when the amount of excess lithium is increased from 0% to 30% of the stoichiometric amount. The optimum amount of excess lithium required to prepare LiMn2O4 powders with nanosized particles and the maximum possible initial discharge capacity is 10%.  相似文献   

11.
A new sol-gel process is developed to modify the Li4Ti5O12 anode material for improved rate capability. The new process brings about the following effects, namely (i) doping of Sn2+ to form Li3.9Sn0.1Ti5O12, (ii) carbon coating and (iii) creation of a porous structure. The doping of Sn2+ results in the lattice distortion without changing the phase composition. A thin layer of amorphous carbon is coated on the doped particles that contain numerous nanopores. The rate capability of the anode material made from the modified powder is significantly improved when discharged at high current rates due to the reduced charge transfer resistance.  相似文献   

12.
Nano-crystalline metal oxides (Co3O4, CuO, and NiO) are synthesized as anode materials for lithium-ion batteries by an ultrasonic spray pyrolysis method. The effects of calcination temperature on the morphology, crystallite size and electrochemical properties of the metal oxides are investigated. X-ray diffraction (XRD) studies show that the crystallite size varies with the final calcination temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal that the calcination temperature strongly influences the morphology of the prepared metal oxides and this results in different electrochemical performance. The existence of a nano-scale microstructure for the prepared metal oxides has a strong relationship with irreversible capacity and capacity retention.  相似文献   

13.
The effects of dopant on the electrochemical properties of spinel-type Li3.95M0.15Ti4.9O12 (M = Al, Ga, Co) and Li3.9Mg0.1Al0.15Ti4.85O12 were systematically investigated. Charge–discharge cycling were performed at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.3 and 0.5 V, the experimental results showed that Al3+ dopant greatly improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Ga3+ slightly increased the capacity of the Li4Ti5O12, but did not essentially alleviate the degradation of cycling stability. Dopants such as Co3+ and Mg2+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

14.
We report a simple strategy to prepare a hybrid of lithium titanate (Li4Ti5O12, LTO) nanoparticles well-dispersed on electrical conductive graphene nanosheets as an anode material for high rate lithium ion batteries. Lithium ion transport is facilitated by making pure phase Li4Ti5O12 particles in a nanosize to shorten the ion transport path. Electron transport is improved by forming a conductive graphene network throughout the insulating Li4Ti5O12 nanoparticles. The charge transfer resistance at the particle/electrolyte interface is reduced from 53.9 Ω to 36.2 Ω and the peak currents measured by a cyclic voltammogram are increased at each scan rate. The difference between charge and discharge plateau potentials becomes much smaller at all discharge rates because of lowered polarization. With 5 wt.% graphene, the hybrid materials deliver a specific capacity of 122 mAh g−1 even at a very high charge/discharge rate of 30 C and exhibit an excellent cycling performance, with the first discharge capacity of 132.2 mAh g−1 and less than 6% discharge capacity loss over 300 cycles at 20 C. The outstanding electrochemical performance and acceptable initial columbic efficiency of the nano-Li4Ti5O12/graphene hybrid with 5 wt.% graphene make it a promising anode material for high rate lithium ion batteries.  相似文献   

15.
A lithium titanate (Li4Ti5O12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li4Ti5O12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li4Ti5O12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li4Ti5O12/CNF). This nano-structured nc-Li4Ti5O12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li4Ti5O12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L−1 and high power density of 7.5 kW L−1 comparable to conventional EDLCs.  相似文献   

16.
Effect of conductive additives and surface modification with NF3 and ClF3 on the charge/discharge behavior of Li4/3Ti5/3O4 (≈4.6 μm) was investigated using vapor grown carbon fiber (VGCF) and acetylene black (AB). VGCF and mixtures of VGCF and AB increased charge capacities of original Li4/3Ti5/3O4 and those fluorinated with NF3 by improving the electric contact between Li4/3Ti5/3O4 particles and nickel current collector. Surface fluorination increased meso-pore with diameter of 2 nm and surface area of Li4/3Ti5/3O4, which led to the increase in first charge capacities of Li4/3Ti5/3O4 samples fluorinated by NF3 at high current densities of 300 and 600 mA g−1. The result shows that NF3 is the better fluorinating agent for Li4/3Ti5/3O4 than ClF3.  相似文献   

17.
The thermal properties of Li4/3Ti5/3O4 and Li1+xMn2O4 electrodes were investigated by isothermal micro-calorimetry (IMC). The 150-mAh g−1 capacity of a Li/Li4/3Ti5/3O4 half cell was obtained through the voltage plateau that occurs at 1.55 V during the phase transition from spinel to rock salt. Extra capacity below 1.0 V was attributed to the generation of a new phase. The small and constant entropy change of Li4/3Ti5/3O4 during the spinel/rock-salt phase transition indicated its good thermal stability. Accelerated rate calorimetry confirmed that Li4/3Ti5/3O4 has better thermal characteristics than graphite. The IMC results for a Li/Li1+xMn2O4 half cell indicated less heat variation due to the suppression of the order/disorder change by lithium doping. The heat profiles of the Li4/3Ti5/3O4/Li1+xMn2O4 full cell indicated less heat generation compared with a mesocarbon-microbead graphite/Li1+xMn2O4 cell.  相似文献   

18.
Spherical, high tap density, carbon-coated Li4Ti5O12 powders are synthesized by a spray-drying process followed by a facile pitch coating. XRD, SEM, TEM analyses show that the carbon layer uniformly coats the Li4Ti5O12 particles without producing any crystalline changes. We demonstrate that the carbon coating significantly increases the electrical conductivity of Li4Ti5O12 making it an efficient, high rate electrode for lithium cells. The electrochemical tests in fact confirm that the 3.25 wt% carbon-coated Li4Ti5O12 electrode operates with ultra high rate capacity levels, i.e., 100 C and has excellent capacity retention and charge-discharge efficiency for a life extending over 100 cycles.  相似文献   

19.
A promising anode material for hybrid electric vehicles (HEVs) is Li4Ti5O12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn2O4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn2O4 cathode materials.  相似文献   

20.
Ionic liquids are assuming a constantly growing importance as preferred media for the progress of various energy devices such as solar cells, supercapacitors and lithium batteries. However, their electrochemical properties are not yet fully recognized and in this paper we try to contribute to fill the gap by investigating the stability window of a sample IL-based solution, as well as its interfacial properties with two typical lithium ion battery electrodes, namely lithium titanate, Li4Ti5O12 and lithium iron phosphate, LiFePO4. The results of a detailed impedance spectroscopy analysis demonstrate that, although operating well within the stability domain of the selected IL-based electrolyte, both electrodes undergo passivation phenomena with the formation on their surface of a solid electrolyte interface, SEI, layer. The impedance spectra show that the resistance of the SEI is very low and stable, this suggesting that its occurrence is highly beneficial in terms of assuring reversible and safe electrode processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号