共查询到20条相似文献,搜索用时 11 毫秒
1.
Bin Liu Yong Shen Chua Guotao Wu Zhitao Xiong Ping Chen 《International Journal of Hydrogen Energy》2012
We report the synthesis of a new hydrogen storage material with a composition of LiCa(NH2)3(BH3)2. The theoretical hydrogen capacity of LiCa(NH2)3(BH3)2 is 9.85 wt.%. It can be prepared by ball milling the mixture of calcium amidoborane (Ca(NH2BH3)2) and lithium amide (LiNH2) in a molar ratio of 1:1. The experimental results show that this material starts to release hydrogen at a temperature as low as ca. 50 °C, which is ca. 70 °C lower than that of pure Ca(NH2BH3)2 possibly resulting from the active interaction of NH2− in LiNH2 with BH3 in Ca(NH2BH3)2. ca. 4.1 equiv. or 6.8 wt.% hydrogen can be released at 300 °C. The dehydrogenation is a mildly exothermic process forming stable nitride products. 相似文献
2.
The electrochemical reactivity of the layered titanium hydrogeno phosphate Ti(HPO4)2·H2O versus lithium has been studied. Lithium intercalation occurs at ∼2.5 V with low polarization, leading to a new lithiated Ti(III) phase, LiTi(HPO4)2·H2O. Ti(HPO4)2·H2O exhibits a reversible capacity of 80 mAh g−1 in the voltage window 1.8–3.5 V at C/10 rate. The stable reversible capacity reveals that the presence of H2O lattice is not affecting the electrochemical reaction. The reversibility of the reaction is demonstrated by extracting lithium from LiTi(HPO4)2·H2O and the host structure is intact. The electrochemical behaviour of dehydrated phases Ti(HPO4)2 and TiP2O7 has also been investigated. 相似文献
3.
Juan Martin Hernandez Dong-Hee Lim Hoang Viet Phuc Nguyen Sung-Pil Yoon Jonghee Han Suk Woo Nam Chang Won Yoon Soo-Kil Kim Hyung Chul Ham 《International Journal of Hydrogen Energy》2014
Spin-polarized density functional theory studies of hydrogen sulfide (H2S) adsorption and decomposition on Ni(100) and Ni3Al(100) surfaces were conducted to understand the aluminum (Al) alloying effect on H2S dissociation. For such purpose, we first determined the near surface structure of fully ordered Ni3Al alloy along the [100] direction by calculating the Al segregation energy to the surface and then examined the adsorption energies of the adsorbates (H2S, HS, S, and H) and the activation barriers for the H2S and HS decomposition by using Climbing Image-Nudged Elastic Band method. We found that regardless of the way to terminate the surface, Al atom in bimetallic Ni3Al(100) tends to exist in the first surface layer, rather than in the second or third layer, and the Ni3Al(100) surface can substantially retard the H2S decomposition by reducing the adsorption energy of sulfur compounds compared to the pure Ni(100) case. Finally, we presented how the Al in Ni3Al modifies the activity of surface Ni atoms toward the sulfur compounds by calculating the local density of states and charge distribution in alloying components. This work hints the importance of knowing how to properly tailor the reactivity of Ni based materials to enhance the resistance for sulfur poisoning. 相似文献
4.
Wei Yang Chunling Zhu Zhaohui Ma Chunwen Sun Liquan Chen Yujin Chen 《International Journal of Hydrogen Energy》2014
MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite has been prepared by a hydrothermal method combined with an in situ diffusion growth process. Single cells based on 300 μm LSGM electrolyte have been fabricated with the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode and a composite cathode consisting of Sr0.9Ce0.1CoO3−δ and Sm-doped ceria (SDC). The peak power densities reach 225, 50, 75 mW cm−2 at 900 °C in H2, CH4 and C3H8, respectively. The cell shows excellent long-term stability at 850 °C. The preliminary results demonstrate that the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite is a promising alternative anode for solid oxide fuel cells. 相似文献
5.
Teshome B. Yisgedu Zhenguo Huang Xuenian Chen Hima K. Lingam Graham King Aaron Highley Sean Maharrey Patrick M. Woodward Richard Behrens Sheldon G. Shore Ji-Cheng Zhao 《International Journal of Hydrogen Energy》2012
The structure of (NH4)2B10H10 (1) was determined through powder XRD analysis. The thermal decomposition of 1 and (NH4)2B12H12 (2) was examined between 20 and 1000 °C using STMBMS methods. Between 200 and 400 °C a mixture of NH3 and H2 evolves from both compounds; above 400 °C only H2 evolves. The dihydrogen bonding interaction in 1 is much stronger than that in 2. The stronger dihydrogen bond in 1 resulted in a significant reduction by up to 60 °C, but with a corresponding 25% decrease in the yield of H2 in the lower temperature region and a doubling of the yield of NH3. The decomposition of 1 follows a lower temperature exothermic reaction pathway that yields substantially more NH3 than the higher temperature endothermic pathway of 2. Heating of 1 at 250 °C resulted in partial conversion of B10H102− to B12H122−. Both 1 and 2 form an insoluble polymeric material after decomposition. The elements of the reaction network that control the release of H2 from the B10H102− can be altered by conducting the experiment under conditions in which pressures of NH3 and H2 are either near, or away from, their equilibrium values. 相似文献
6.
A series of Li deficient LiTi2(PO4)3 samples were prepared and sintered and the density was measured to determine the rate-controlling species for sintering of LiTi2(PO4)3. It was observed that as the Li content decreased the density decreased. This result suggests that oxygen does not control sintering. A comparison of the LiTi2(PO4)3 sintering data to sintering and diffusion data in olivine, which exhibits a similar framework structure to LiTi2(PO4)3, suggests that P is the species which controls sintering. This suggestion was confirmed by the density results of a Li excess LiTi2(PO4)3 sample. 相似文献
7.
Young Mee JungYeonju Park Subrata SarkerJae-Joon Lee Uuriintuya DembereldorjSang-Woo Joo 《Solar Energy Materials & Solar Cells》2011,95(1):326-331
Thermal degradation mechanism of the self-assembled thin films of [Ru(dcbpyH)2-(CN)2] (Ruthenium 505, R505) anchoring on TiO2 surfaces via its carboxylate group has been examined by temperature-dependent diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The CN stretching bands of R505 at 2000-2100 cm−1 appeared to change drastically at ≈140 °C on TiO2 surfaces, whereas a major CN peak at ∼2090 cm−1 disappeared at a much higher temperature above ≈250 °C in their solid states. Two-dimensional (2D) correlation analysis was introduced to explain the thermal desorption behaviors of the Ruthenium dye. Multiple peaks of the CN stretching vibrations are more clearly resolved in the 2D correlation analysis. More complicated features in the CN stretching vibrational spectra on TiO2 than those of the solid states suggest a substantial interaction of the CN groups with the TiO2 surfaces. 相似文献
8.
A modified Zr-coating process was introduced to improve the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. The ZrO2-coating was carried out on an intermediate, (Ni1/3Co1/3Mn1/3)(OH)2, rather than on Li(Ni1/3Co1/3Mn1/3)O2. After a heat treatment process, one part of the Zr covered the surface of Li(Ni1/3Co1/3Mn1/3)O2 in the form of a Li2ZrO3 coating layer, and the other part diffused into the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2. A decreasing gradient distribution in the concentration of Zr was detected from the surface to the bulk of Li(Ni1/3Co1/3Mn1/3)O2 by X-ray photoelectron spectra (XPS). Electrochemical tests indicated that the 1% (Zr/Ni + Co + Mn) ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2 prepared by this process showed better cyclability and rate capability than bare Li(Ni1/3Co1/3Mn1/3)O2. The result can be ascribed to the special effect of Zr in ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2. The surface coating layer of Li2ZrO3 improved the cycle performance, while the incorporation of Zr in the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2 modified the rate capability by increasing the lattice parameters. Electrochemical impedance spectra (EIS) results showed that the increase of charge transfer resistance during cycling was suppressed significantly by ZrO2 modification. 相似文献
9.
K. Zaghib M. Dontigny P. Charest J.F. Labrecque A. Guerfi M. Kopec A. Mauger F. Gendron C.M. Julien 《Journal of power sources》2008
The effect of H2O on carbon-coated LiFePO4 particles was investigated by chemical analysis, structural analysis (X-ray diffraction, SEM, TEM), optical spectroscopy (FTIR, Raman) and magnetic measurements. Upon immersion in water, part of the product floats while the main part sinks. Both the floating and the sinking part have been analyzed. We find that the floating and sinking part only differ by the amount of carbon that partly detaches from the particles upon immersion in water. Exposure to H2O results in rapid attack, within minutes, of the surface layer of the particles, because the particles are no longer protected by carbon. The deterioration of the carbon coat is dependent on the synthesis process, either hydrothermal or solid-state reaction. In both cases, however, the carbon coat is permeable to water and fails to protect the surface of the LiFePO4 particles. The consequence is that this immersion results in the chemical attack of LiFePO4, but is restricted to the surface layer of the particles (few nanometers-thick). In case the particles are simply exposed to humid air, the carbon coat protects the particles more efficiently. In this case, the exposure to H2O mainly results in the delithiation of the surface layer, due to the hydrophilic nature of Li, and only the surface layer is affected, at least for a reasonable time of exposure to humid air (weeks). In addition, within this timescale, the surface layer can be chemically lithiated again, and the samples can be dried to remove the moisture, restoring the reversible electrochemical properties. 相似文献
10.
Xianliang FuDennis Y.C. Leung Xuxu WangWeiwei Xue Xianzhi Fu 《International Journal of Hydrogen Energy》2011,36(2):1524-1530
ZnSn(OH)6 nanocubes (ZHS) were synthesized by solvothermal method and then characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), N2 sorption (BET surface area), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Photocatalytic reforming of ethanol for H2 production over ZHS samples were investigated and compared under different reaction conditions. The results indicated that the cubes were formed by the adsorption of small irregular ZHS particles via the Ostwald ripening process. ZHS showed high photoactivity for reforming ethanol to H2 and CH4. The H2 evolution rate of ZHS was found more susceptible to the crystallinity of the samples than the surface area, and could be significantly enhanced by loading with Pt. 相似文献
11.
Jun-Chao Zheng Xin-Hai LiZhi-Xing Wang Hua-Jun GuoQi-Yang Hu Wen-Jie Peng 《Journal of power sources》2009
The monoclinic-type Li3V2(PO4)3 cathode material was synthesized via calcining amorphous Li3V2(PO4)3 obtained by chemical reduction and lithiation of V2O5 using oxalic acid as reducer and lithium carbonate as lithium source in alcohol solution. The amorphous Li3V2(PO4)3 precursor was characterized by using TG–DSC and XPS. The results showed that the V5+ was reduced to V3+ by oxalic acid at ambient temperature and pressure. The prepared Li3V2(PO4)3 was characterized by XRD and SEM. The results indicated the Li3V2(PO4)3 powder had good crystallinity and mesoporous morphology with an average diameter of about 30 nm. The pure Li3V2(PO4)3 exhibits a stable discharge capacity of 130.08 mAh g−1 at 0.1 C (14 mA g−1). 相似文献
12.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes. 相似文献
13.
Yan-Bing He Zhi-Yuan Tang Quan-Sheng Song Hui Xie Quan-Hong Yang Yuan-Gang Liu Guo-Wei Ling 《Journal of power sources》2008
The commercial 18650 Li(Ni1/3Co1/3Mn1/3)O2/graphite high power batteries were prepared and their electrochemical performance at temperatures of 25 and 50 °C was extensively investigated. The results showed that the charge-transfer resistance (Rct) and solid electrolyte interface resistance (Rsei) of the high power batteries at 25 °C decreased as states of charge (SOC) increased from 0 to 60%, whereas Rct and Rsei increased as SOC increased from 60 to 100%. The discharge plateau voltage of batteries reduced greatly with the increase in discharge rate at both 25 and 50 °C. The high power batteries could be discharged at a very wide current range to deliver most of their capacity and also showed excellent power cycling performance with discharge rate of as high as 10 C at 25 °C. The elevated working temperature did not influence the battery discharge capacity and cycling performance at lower discharge rates (e.g. 0.5, 1, and 5 C), while it resulted in lower discharge capacity at higher discharge rates (e.g. 10 and 15 C) and bad cycling performance at discharge rate of 10 C. The batteries also exhibited excellent cycle performance at charge rate of as high as 8 C and discharge rate of 10 C. 相似文献
14.
Liqun Wang Xiaocheng Li Tieming Guo Xingbin Yan Beng Kang Tay 《International Journal of Hydrogen Energy》2014
Supercapacitor, known as an important energy storage device, is also a critical component for next generation of hydrogen fuel cell vehicles. In this study, we report a novel route for synthesis of three-dimensional Ni(OH)2/graphene/nickel foam electrode by electrochemical depositing Ni(OH)2 nanoflakes on graphene network grown on nickel foam current collector and explore its applications in supercapacitors. The resulting binder-free Ni(OH)2/graphene/nickel foam electrode exhibits excellent supercapacitor performance with a specific capacitance of 2161 F/g at a current density of 3 A/g. Even as the current density reaches up to 60 A/g, it still remains a high capacitance of 1520 F/g, which is much higher than that of Ni(OH)2/nickel foam electrode. The enhanced rate capability performance of Ni(OH)2/graphene/nickel foam electrode is closely related to the presence of highly conductive graphene layer on nickel foam, which can remarkably boost the charge-transfer process at electrolyte–electrode interface. The three-dimensional graphene/nickel foam substrate also significantly improves the electrochemical cycling stability of the electrodeposited Ni(OH)2 film because of the strong adhesion between graphene film and electrodeposited Ni(OH)2 nanoflakes. Results of this study provide an alternative pathway to improve the rate capability and cycling stability of Ni(OH)2 nanostructure electrode and offer a great promise for its applications in supercapacitors. 相似文献
15.
Vaishali Rao KoppoluMool C. Gupta Louis Scudiero 《Solar Energy Materials & Solar Cells》2011,95(4):1111-1118
1, 2-dicyano-methanofullerene (C60(CN)2) is a soluble fullerene derivative that has been reported to have stronger electron affinity than parent C60. Ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) experiments were carried out on C60(CN)2 thin films spin coated on heavily doped n-type Si substrate. UPS spectra enabled the determination of the vacuum shift at the fullerene derivative/Si interface and the onset of the highest occupied molecular orbital (HOMO). From the UV-vis absorption spectra of C60(CN)2 thin films spin coated on quartz substrates, the optical band gap (Eg) and the onset of absorption were determined. These measurements allowed the determination of the lowest occupied molecular orbital (LUMO) position. The morphology of the deposited film was probed by AFM and reveals non-uniformity of the thin film. Open circuit voltage (Voc) measurements on P3HT/C60(CN)2 based organic solar cell device are compared to the commonly used P3HT/PCBM device. 相似文献
16.
Li3V(2 − 2x/3)Mgx(PO4)3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C6H10O4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li3V(2 − 2x/3)Mgx(PO4)3/C network structure is formed. The effect of Mg2+ doped on the electrochemical properties of Li3V2(PO4)3/C positive materials has been studied. Li3V1.8Mg0.30(PO4)3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li3V2(PO4)3/C, Li3V(2 − 2x/3)Mgx(PO4)3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li3V1.8Mg0.30(PO4)3 exhibits higher structural stability than the undoped system. 相似文献
17.
A study on the effect of CO2 and H2O dilution on the laminar burning characteristics of CO/H2/air mixtures was conducted at elevated pressures using spherically expanding flames and CHEMKIN package. Experimental conditions for the CO2 and H2O diluted CO/H2/air/mixtures of hydrogen fraction in syngas from 0.2 to 0.8 are the pressures from 0.1 to 0.3 MPa, initial temperature of 373 K, with CO2 or H2O dilution ratios from 0 to 0.15. Laminar burning velocities of the CO2 and H2O diluted CO/H2/air/mixtures were measured and calculated using the mechanism of Davis et al. and the mechanism of Li et al. Results show that the discrepancy exists between the measured values and the simulated ones using both Davis and Li mechanisms. The discrepancy shows different trends under CO2 and H2O dilution. Chemical kinetics analysis indicates that the elementary reaction corresponding to peak ROP of OH consumption for mixtures with CO/H2 ratio of 20/80 changes from reaction R3 (OH + H2 = H + H2O) to R16 (HO2+H = OH + OH) when CO2 and H2O are added. Sensitivity analysis was conducted to find out the dominant reaction when CO2 and H2O are added. Laminar burning velocities and kinetics analysis indicate that CO2 has a stronger chemical effect than H2O. The intrinsic flame instability is promoted at atmospheric pressure and is suppressed at elevated pressure for the CO2 and H2O diluted mixtures. This phenomenon was interpreted with the parameters of the effective Lewis number, thermal expansion ratio, flame thickness and linear theory. 相似文献
18.
The apatite-type lanthanum silicate films were successfully synthesized by modified atmosphere plasma spraying using lanthanum oxide and silicon oxide mixed powders and precalcined hypereutectic powders in the size range 1–3 μm and 5–8 μm, respectively, as starting feedstock materials. The films differed not only in microstructural scale, but also in the characteristic of the degree of film densification. A detail describing the evolution of microstructure has been discussed. A considerable improvement in densification of the La10(SiO4)6O3 electrolyte films has been observed. 相似文献
19.
Jun-chao Zheng Zhi-xing Wang De-rong Liu Ling-jun Li Hua-jun Guo 《Journal of power sources》2010,195(9):2935-2938
LiFePO4-Li3V2(PO4)3 composite cathode material is synthesized by aqueous precipitation of FeVO4·xH2O from Fe(NO3)3 and NH4VO3, following chemical reduction and lithiation with oxalic acid as the reducer and carbon source. Samples are characterized by XRD, SEM and TEM. XRD pattern of the compound synthesized at 700 °C indicates olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 are co-existed. TEM image exhibits that LiFePO4-Li3V2(PO4)3 particles are encapsulated with a carbon shell 5-10 nm in thickness. The LiFePO4-Li3V2(PO4)3 compound cathode shows good electrochemical performance, and its discharge capacity is about 139.1 at 0.1 C, 135.5 at 1 C and 116 mA h g−1 at 3 C after 30 cycles. 相似文献
20.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1. 相似文献