首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influences of annealing temperature and different poly (ethylene glycol) (PEG) contents in nano-crystalline TiO2 electrodes with and without N3 dye on the electron transfer in a dye-sensitized solar cell (DSSC) were investigated. It is found that the power conversion efficiency increases with the increase in annealing temperature and becomes saturated at 400–500 °C, and further increase lowers the performance which is consistent with the enhancement of the crystalline TiO2 particles observed in X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. Electrochemical impedance spectroscopy (EIS) also confirms this behavior. These results have been further verified by studying the electron lifetimes (τe) and electron diffusion coefficients (De) of a bare TiO2 and a dye-sensitized TiO2 film using a pulsed laser spectrometer. It is noted that both the electron lifetime and the electron diffusion coefficient increase with the increase in annealing temperature. However, the evolution of rutile TiO2 begins beyond 600 °C and this lowers the dye absorbance and the electron diffusion coefficients of TiO2 electrodes. A similar study was made by varying the content of the PEG in the TiO2 films. It is found that with the increase in the PEG content, a decrease in the electron lifetimes and a little hike in the electron diffusion coefficients are noted, where the cell performance remains almost the same. In addition, the dye adsorption decreases the electron lifetime and increases the electron diffusion coefficient of the TiO2 films regardless of the PEG content and the annealing temperature.  相似文献   

2.
The optimization of solar energy conversion efficiency of dye-sensitized solar cells (DSSCs) was investigated by the tuning of TiO2 photoelectrode's surface morphology. Double-layered TiO2 photoelectrodes with four different structures were designed by the coating of TiO2 suspension, incorporated with low and high molecular weight poly(ethylene glycol) as a binder. Among these four systems, P2P1, where P1 and P2 correspond to the molecular weight of 20,000 and 200,000, respectively, showed the highest efficiency under the conditions of identical film thickness and constant irradiation. This can be explained by the larger pore size and higher surface area of P2P1 TiO2 electrode than the other materials as revealed by scanning electron microscopic (SEM) and Brunauer–Emmett–Teller (BET) analyses. Electrochemical Impedance Spectroscopy (EIS) analysis shows that P2P1 formulation displayed a smaller resistance than the others at the TiO2/electrolyte interface. The best efficiency (η) of 9.04% with the short-circuit photocurrent density (Jsc) and open-circuit voltage (Voc) of 18.9 mA/cm2 and 0.74 V, respectively, was obtained for a solar cell by introducing the light-scattering particles to the TiO2 nanoparticles matrix coated on FTO electrode having the sheet resistivity of 8 Ω/sq.  相似文献   

3.
A novel titanium oxide paste based on Pechini sol-gel method and nanocrystalline titanium oxide powder have been successfully developed. Titanium oxide layers possess high inner surface area assuring high dye loading and well-connected nanocrystalline grains assuring good electron transport within the layer. The dye-sensitized layers have been used to assemble dye-sensitized solar cells with acetonitrile- and ionic liquid-based electrolyte. Overall conversion efficiencies of dye-sensitized solar cells (DSSCs) determined under standard test conditions (100 mW/cm2, 25 °C and AM 1.5 G) are 10.2% for acetonitrile and 7.3% for ionic liquid-based electrolyte.  相似文献   

4.
The effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells was investigated. The solvents with large donor number enhanced the open-circuit voltage but reduced the short-circuit current density. By mixing 30 vol.% NMP with 70 vol.% GBL, the open-circuit voltage increased from 0.55 to 0.632 V and the fill factor increased from 0.607 to 0.613 while the short-circuit current density decreased little. The further addition of 0.4 M pyridine into the above mixed solvent caused a huge increase of overall conversion efficiency from 5.73 to 6.70% under irradiation of 100 mW cm−2.  相似文献   

5.
Dye-sensitized nanocrystalline TiO2 solar cells (nc-DSCs) are based on a fundamentally different working principle than solar cells based on semiconductors. This could have implications for the characterization of nc-DSCs. In this study a comparison is made between two methods for determination of the spectral response of nc-DSCs. The standard method for determination of the spectral response according to the ASTM E1021-84 norm appears to be valid for the nc-DSC. The response of the solar cell to pulsed irradiation plays an important role in this determination, since pulsed illumination of the solar cell is involved. The response time of the nc-DSC is related to electron trapping in the TiO2 and depends on illumination conditions and also on chemical composition of the cell. For this reason, prior to measurements of spectral response of nc-DSCs, the response time of the cell should be measured under the same illumination conditions that are applied during spectral response measurements.  相似文献   

6.
Quasi-solid-state dye-sensitized solar cells with enhanced performance were made by using nanocrystalline TiO2 films without any template deposited on plastic or glass substrates at low temperature. A simple and benign procedure was developed to synthesize the low-temperature TiO2 nanostructured films. According to this method, a small quantity of titanium isopropoxide (TTIP) was added in an ethanolic dispersion of TiO2 powder consisting of nanoparticles at room temperature, which after alkoxide's hydrolysis helps to the connection between TiO2 particles and to the formation of mechanically stable thick films on plastic or glass substrates. Pure TiO2 films without any organic residuals consisting of nanoparticles were formed with surface area of 56 m2/g and pore volume of 0.383 cm3/g similar to that obtained for Degussa-P25 powder. The structural properties of the films were characterized by microscopy techniques, X-ray diffractometry, and porosimetry. Overall solar to electric energy conversion efficiencies of 5.3% and 3.2% (under 1sun) were achieved for quasi-solid-state dye-sensitized solar cells employing such TiO2 films on F:SnO2 glass and ITO plastic substrates, respectively. Thus, the quasi-solid-state device based on low-temperature TiO2 attains a conversion efficiency which is very close to that obtained for cells consisting of TiO2 nanoparticles sintered at high temperature.  相似文献   

7.
We have studied the influence of electrolytes on the photovoltaic performance of mercurochrome-sensitized nanocrystalline TiO2 solar cells using LiI, LiBr, and tetraalkylammonium iodides as the electrolyte. Short-circuit photocurrent density (Jsc) and open-circuit photovoltage (Voc) depended strongly on the electrolyte. Jsc of 3.42 mA cm−2 and Voc of 0.52 V were obtained for the LiI electrolyte and Jsc of 2.10 mA cm−2 and Voc of 0.86 V were obtained for the Pr4NI electrolyte. This difference in photovoltaic performance was due to the change in the conduction band level of the TiO2 electrode. Large Voc of 0.99 V was obtained for the LiBr electrolyte due to the large energy gap between the conduction band level of TiO2 and the Br/Br2 redox potential. Solar cell performance also depended strongly on organic solvent, suggesting that the physical properties of solvents such as Li ion conductivity and donor number affect photovoltaic performance.  相似文献   

8.
Highly ordered TiO2 nanotube arrays fabricated by anodization are very attractive to dye-sensitized solar cells (DSCs) due to their superior charge percolation and slower charge recombination. However, the efficiency of TiO2-nanotube-based DSCs is 6.89%, which is still lower than that of TiO2-nanoparticle-based DSCs. We have suggested the transplanting the highly ordered TiO2 nanotube arrays to FTO glass to improve the performance of TiO2-nanotube-based DSCs. DSCs based on transplanted TiO2 nanotube arrays and TiO2 nanoparticles were fabricated by same process and materials to exclude the unexpected factors. In TiO2 thickness of ca. 15 μm, the efficiency of 2.91% in front-side illuminated DSCs based on TiO2 nanotube arrays was higher than those in back-side illuminated DSCs based on TiO2 nanotube arrays and in front-side illuminated DSCs based on TiO2 nanoparticle. Front-side illuminated DSCs based on TiO2 nanotube arrays having various thicknesses were successfully fabricated. The efficiency in DSCs having 20.0 μm thick TiO2 nanotube arrays was improved to 5.36% by TiCl4 treatment.  相似文献   

9.
A theoretical model based on an integration of both Schottky barrier model and electron diffusion differential model was developed to determine the TiO2/TCO interfacial effect on the current–voltage (J–V) characteristics of a dye-sensitized solar cell (DSSC). The thermionic-emission theory was appropriately applied to describe the electron transfer at the TiO2/TCO interface. A parametric analysis was conducted to study how the photoelectric outputs varied with multiple independent variables, such as Schottky barrier height (φb) and temperature. It was found that the variation of the maximum DSSC power output (Pmax) was insignificant when φb varied at a low value; however, an increase in φb exceeding a critical value caused an apparent decrease in the maximum DSSC power output. The theoretical results were quantitatively compared and agreed very well with published theoretical results. The experimental data from literature were found to agree well with the present theoretical results, qualitatively validating the present model. The theoretical model can be applied to facilitate selection of suitable TCO material in DSSC design to avoid the adverse TiO2/TCO interfacial effect.  相似文献   

10.
For the working electrode of dye-sensitized solar cell (DSC), TiO2/SiO2 nanocomposite materials were electrodeposited on transparent fluorine doped tin oxide-coated glass by cathodic electrodeposition at room temperature. The electrode and DSC fabricated with TiO2/SiO2 nanocomposite were characterized with photocurrent density, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and a photovoltaic performance test. On the electrodeposition, the addition of an appropriate amount of SiO2 in the bath containing TiO2 slurry was essential to achieve the superior crystallinity, photocurrent density and photovoltaic performance of the resulting TiO2/SiO2 electrode, which was significantly superior to a bare TiO2 electrode. This enhanced performance of optimized TiO2/SiO2 electrode was ascribed to the role of SiO2 as an energy barrier, increasing the physical separation of injected electrons and oxidized dyes/redox couple, and thereby retarding the recombination reactions in the resulting DSC.  相似文献   

11.
Novel nanocrystalline TiO2 films with the textural channels are obtained for dye-sensitized solar cells (DSSCs). The textural channels consisting of the cracks on the surface and the nanopores with average diameter of about 41 nm are produced by packaging ZnO nanowires with diameter of 30–50 nm into TiO2 films and subsequently etching ZnO nanowires by hydrochloric acid. The performances of DSSCs based on novel TiO2 films (with the textural channels) and traditional TiO2 films (without the textural channels) are investigated, respectively. When two kinds of typical quasi-solid-state electrolytes and one kind of solid-state electrolyte are used, the energy conversion efficiencies of DSSCs from novel TiO2 films are improved by 20–30% compared to that from traditional TiO2 films. The reasons for the great improvement are investigated chiefly by UV–vis absorption spectra, field emission-scanning electron microscope (FE-SEM) and electrochemical impedance spectroscopy (EIS) technique. The results show that the introduction of the textural channels facilitates better penetration of quasi-solid/solid-state electrolytes into the nanopores of novel TiO2 films and thus results in better interfacial/electrical contact and faster interfacial reaction.  相似文献   

12.
Dye-sensitized solar cells (DSSCs) incorporating TiO2 porous films, prepared at a low temperature (150 °C), along with multi-wall carbon nanotubes (MWCNTs) were studied using two different electrolytes, namely LiI and THI. Electrochemical impedance spectroscopy (EIS) was employed to quantify the charge transport resistance and electron lifetime (τe) under different levels (wt%) of MWCNTs and electrolytes. The charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) increased as a function of the MWCNT concentration, which ranged 0.1-0.5 wt%, due to a decrease in the surface area and decreased dye adsorption. The characteristic peak shifted to a lower frequency at 0.1 wt% of MWCNT, indicating a longer electron lifetime. The DSSC with the TiO2 electrode containing 0.1 wt% of MWCNT resulted in a higher short-circuited current density (JSC) of 9.08 mA/cm2, an open-circuit voltage (VOC) of 0.781 V, and a cell conversion efficiency of 5.02%. EIS was also conducted under dark conditions. The large value at a middle frequency represented electron transport at the TiO2/dye/electrolyte interface (Rrec). The Rrec for 0.1 wt% MWCNT/TiO2 was found to be 114 Ω, and for those with 0.3 and 0.5 wt% were 35 and 30 Ω, respectively. The significantly higher value of Rrec suggested that the charge recombination between injected electrons and electron acceptors in the redox electrolyte, I3, was remarkably retarded. Finally, electrolytes with LiI and THI were used to compare the cell conversion performance under the same conditions. It was found that more electrons were injected in the TiO2 electrode and the electron recombination reaction was faster in the DSSC with THI than that with LiI.  相似文献   

13.
Cauliflower-like TiO2 rough spheres, which are about 200 nm large, have greatly enhanced light harvesting efficiency and energy conversion efficiency of dye-sensitized solar cells (DSC), due to their high light scattering effect and large BET surface area (80.7 m2 g−1) even after calcinations at 450 °C for 30 min. The large size TiO2 rough and smooth spheres, produced at different initial temperatures by hydrolysis of Ti(OBu)4 with P105 (EO37PO56EO37) or F68 (EO78PO30EO78) tri-block copolymer as structural agents, have nearly the same diameter of ∼275 nm and strong light scattering effects in the wavelength of 400–750 nm. However, rough spheres have even higher light scattering effect and larger BET surface area than smooth spheres for the roughness of the surface. By adding 25 wt.% large TiO2 spheres into the over-layer of TiO2 film composed of ∼20 nm TiO2 particles as light scattering centers, the energy conversion efficiency of the film containing rough spheres reaches 7.36%, much larger than that of smooth spheres (6.25%). From another point of view, the TiO2 rough spheres may have the satisfying ability in other fields of application such as photo-catalysis, drug carriers and so on.  相似文献   

14.
We report on the characteristics of a TiO2 passivating layer grown by radio frequency (RF) magnetron sputtering on F-doped SnO2 (FTO) electrodes as a function of its thickness. The optical transparency, surface roughness and passivation properties of the TiO2 layer passivating the FTO electrode depend on the thickness of the TiO2 passivating layer. In addition, it was found that the power conversion efficiency of the dye-sensitized solar cells (DSSCs) is critically dependent on the thickness of RF sputtered TiO2 layer inserted between FTO electrode and nanoporous TiO2 layer. The DSSC fabricated on 50 nm thick TiO2 passivating FTO electrode showed the maximum power conversion efficiency of 4.42% due to effective prevention of the electron transfer to electrolyte. This indicates that the thickness optimization of the TiO2 passivating layer is one of the important parameter to obtain high performance DSSCs.  相似文献   

15.
The effects of paste components on the properties of porous TiO2 film electrodes prepared through screen-printing technique were investigated in order to efficiently control and optimize the main fabrication step of the dye-sensitized solar cells (DSSCs). The screen-printed porous TiO2 films were characterized by means of spectroscopy (XRD), microscopy (SEM) and electrochemical method and evaluated as part of DSSCs for the energy conversion. The experimental results indicate that the microstructural characteristics of the printed films and the performances of the corresponding DSSCs are dependent on the paste compositions. The experimental repeatability is nice and the properties of the film are uniform after the optimization of paste composition.  相似文献   

16.
Alumina (Al2O3) shell formation on TiO2 core nanoparticles by atomic layer deposition (ALD) is studied to suppress the recombination of charge carriers generated in a dye-sensitized solar cell (DSSC). It is relatively easy to control the shell thickness using the ALD method by controlling the number of cycles. An optimum thickness can be identified, which allows tunneling of the forward current while suppressing recombination. High-resolution TEM measurements show that a uniform Al2O3 shell is formed around the TiO2 core particles and elemental mapping of the porous TiO2 layer reveals that the Al2O3 distribution is uniform throughout the layer. The amount of dye absorption is increased with increase in the shell thickness but electrochemical impedance spectroscopic (EIS) measurement shows a drastic increase in the resistance. With an optimum Al2O3 thickness of 2 nm deposited by ALD, a 35% improvement in the cell efficiency (from 6.2 to 8.4%) is achieved.  相似文献   

17.
Core-shell-type nanoparticles with TiO2 cores and CaCO3 shells were applied as the electrode of dye-sensitized solar cells. The performance of the cell was significantly improved (as high as 26.7%) compared to the case when un-coated TiO2 particle film was used as electrode. The improved energy conversion efficiency has been ascribed to (i) enhanced dye adsorption due to the high isoelectric point of the overlayer, and (ii) the prevention of the back electron transfer by the insulating nature of the overlayer.  相似文献   

18.
The effects of low-temperature O2 plasma treatment of a TiO2 film are studied with the objective of improving the performance of dye-sensitized solar cells (DSSCs). X-ray photoelectron spectra (XPS) reveal that the ratio of titanium dioxide to titanium sub-oxides is increased in the O2 plasma-treated TiO2 film, compared with that of the untreated TiO2 film. This increase suggests that the oxygen vacancies in the film are effectively reduced. The near-edge X-ray absorption fine structure (NEXAFS) spectra results agree with the XPS result. It is proposed that there is a correlation between the shifts of the peaks in the NEXAFS spectra and the adsorption of N719 dye on the TiO2 particles. A DSSC having an O2 plasma-treated, 4 μm thick TiO2 film electrode renders a short-circuit photocurrent of 7.59 mA cm−2, compared with 6.53 mA cm−2 for a reference cell with an untreated TiO2 electrode of the same thickness. As a result of these changes, the solar-to-electricity conversion efficiency of the O2 plasma-treated cell is found to be 4.0% as compared with 3.5% for the untreated cell. This improvement in the performance is rationalized on the basis of increased N719 dye adsorption on to the TiO2, due to the reduction in the number of oxygen vacancies caused by the oxygen plasma treatment.  相似文献   

19.
Nanoparticle TiO2 electrodes are fabricated using an improved electrostatic spray coating (ESC) method which is more simple, low cost and well reproducible comparing with the conventional method of preparing electrode for dye-sensitized solar cells (DSSC) by introducing monoethanolamine (MEA) into precursor solution. It is surprised to find that high transparency of films and good adhesion between film and substrate achieve and that particles size can be easily controlled by adjusting the proportion of MEA. The relationship between particles size and proportion of MEA added is presented in our work. After samples with various particle sizes are applied in DSSC, an increase of open-circuit voltage (Voc) from 620 mV to 765 mV is observed with the increase of particle size from 8 nm to 48 nm. Associated with photoluminescence results, we ascribe the change of Voc to the different dominative states of films: surface defects and oxygen vacancies in 8 nm films, oxygen vacancy defects in 25 nm films and higher crystal quality with little of both defects in 48 nm films. In addition, different thickness films with optimized proportion of MEA is applied in DSSC, an overall light to electricity conversion efficiency (η) of 2.91% is obtained with a thickness of 2.0 μm.  相似文献   

20.
Microwave preparation of TiO2 nanocrystalline electrode for use in dye-sensitized solar cells is examined. A multi-mode microwave heating system operating at a frequency of 28 GHz is used to produce rapid processing. Well-sintered TiO2 nanocrystalline thin film is successfully fabricated on transparent conductive FTO glass electrode. Photoelectron energy conversion efficiency of 5.51% is achieved in an electrode prepared by 28 GHz microwave irradiation at 0.7 kW for 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号