首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
An efficient optimization procedure based on the clonal selection algorithm (CSA) is proposed for the solution of short-term hydrothermal scheduling problem. CSA, a new algorithm from the family of evolutionary computation, is simple, fast and a robust optimization tool for real complex hydrothermal scheduling problems. Hydrothermal scheduling involves the optimization of non-linear objective function with set of operational and physical constraints. The cascading nature of hydro-plants, water transport delay and scheduling time linkage, power balance constraints, variable hourly water discharge limits, reservoir storage limits, operation limits of thermal and hydro units, hydraulic continuity constraint and initial and final reservoir storage limits are fully taken into account. The results of the proposed approach are compared with those of gradient search (GS), simulated annealing (SA), evolutionary programming (EP), dynamic programming (DP), non-linear programming (NLP), genetic algorithm (GA), improved fast EP (IFEP), differential evolution (DE) and improved particle swarm optimization (IPSO) approaches. From the numerical results, it is found that the CSA-based approach is able to provide better solution at lesser computational effort.  相似文献   

2.
This paper presents differential evolution (DE)-based optimization technique for solving short-term economic generation scheduling of hydrothermal systems. A multi-reservoir cascaded hydrothermal system with non-linear relationship between water discharge rate, power generation and net head is considered here. The water transport delay between the connected reservoirs is also taken into account. Several equality and non-equality constraints on thermal units as well as hydro units and the effect of valve-point loading are also included in the problem formulation. The effectiveness of the proposed method is demonstrated on two test systems comprising of hydro and thermal units. Convergence characteristic of the proposed technique has been found to be quite satisfactory. The results obtained by the proposed technique are compared with other evolutionary methods. It is seen that the proposed technique is capable of producing encouraging solutions.  相似文献   

3.
This paper presents a solution technique for multiobjective short-term hydrothermal scheduling (MSTHTS) through civilized swarm optimization (CSO) which is the hybrid of society–civilization algorithm (SCA) and particle swarm optimization (PSO). The intra and inter society communication mechanisms of SCA have been embedded into the food-searching strategy of PSO to form CSO. The MSTHTS problem is formulated by considering economic and emission objectives. A new ideal guide method has been proposed to find out the Pareto-optimal front. Multi-reservoir cascaded hydro power plants having nonlinear generation characteristics and thermal power plants with non-smooth cost and emission curves are considered for analysis. Other aspects such as, water transport delay, water availability, storage conformity, power loss and operating limits are fully accounted in the problem formulation. The performance of the proposed CSO is demonstrated through two MSTHTS problems and the results are compared with those presented in the literature. CSO along with the new ideal guide method outperforms all the previous approaches by providing quality Pareto-optimal fronts.  相似文献   

4.
The short-term optimal hydrothermal scheduling (STOHS) plays one of the most important roles in power systems operation. The STOHS problem involves the solution of difficult constrained optimization problems that require good computational techniques. This paper proposes a modified chaotic differential evolution (MCDE) approach for the solution of this difficult optimization problem. A repair strategy and a novel selection operation are simultaneously introduced into the MCDE approach for handling constraints of the problem. The repair strategy preserves the feasibility of solutions generated and avoids the use of penalty factors as much as possible. The introduced selection operation makes a not clearly distinction between feasible solutions and infeasible ones at early stage of the algorithm and makes a clearly distinction at the later stage. Additionally, an adaptive regeneration operation is proposed to enhance population diversity and to avoid local optimums. Moreover, a chaotic local search technique is introduced also to accelerate the searching process of the algorithm. The proposed MCDE approach is applied to three well-known hydrothermal test systems in order to verify its feasibility and efficiency. The obtained results are compared with those obtained by other population-based heuristic approaches reported in literature. It is observed from the comparisons that the proposed MCDE approach performs effectively and can yield competitive solutions.  相似文献   

5.
This paper presents an algorithm for solving the hydrothermal scheduling through the application of genetic algorithm (GA). The hydro subproblem is solved using GA and the thermal subproblem is solved using lambda iteration technique. Hydro and thermal subproblems are solved alternatively. GA based optimal power flow (OPF) including line losses and line flow constraints are applied for the best hydrothermal schedule obtained from GA. A 9-bus system with four thermal plants and three hydro plants and a 66-bus system with 12 thermal plants and 11 hydro plants are taken for investigation. This proposed GA reduces the complexity, computation time and also gives near global optimum solution.  相似文献   

6.
This article presents a novel teaching learning based optimization (TLBO) to solve short-term hydrothermal scheduling (HTS) problem considering nonlinearities like valve point loading effects of the thermal unit and prohibited discharge zone of water reservoir of the hydro plants. TLBO is a recently developed evolutionary algorithm based on two basic concept of education namely teaching phase and learning phase. In first phase, learners improve their knowledge or ability through the teaching methodology of teacher and in second part learners increase their knowledge by interactions among themselves. The algorithm does not require any algorithm-specific parameters which makes the algorithm robust. Numerical results for two sample test systems are presented to demonstrate the capabilities of the proposed TLBO approach to generate optimal solutions of HTS problem. To test the effectiveness, three different cases namely, quadratic cost without prohibited discharge zones; quadratic cost with prohibited discharge zones and valve point loading with prohibited discharge zones are considered. The comparison with other well established techniques demonstrates the superiority of the proposed algorithm.  相似文献   

7.
水火电力系统短期发电计划优化方法综述   总被引:6,自引:0,他引:6  
水火电力系统的短期发电计划问题在电力系统的安全可靠和经济运行中发挥着越来越重要的作用,由于其本身的复杂性,很难从理论上找到全局最优解。深入探讨各种优化算法,并加以分类,详细综述各种优化方法在水火电力系统短期发电计划问题中所取得的研究成果和存在的不足之处。  相似文献   

8.
9.
针对传统粒子群算法求解云计算多目标任务调度的收敛速度慢、精度低的缺陷,提出一种优化多目标任务调度粒子群算法(MOTS-PSO)。首先,引入非线性自适应惯性权重,改变粒子的寻优能力,避免算法陷入局部最优;其次引入花朵授粉算法概率更新机制,平衡粒子的全局搜索和局部寻优,并对粒子的全局搜索位置更新公式进行改进;最后引入萤火虫算法,产生"精英解"对局部搜索位置更新公式进行改进;同时利用"精英解"对粒子的位置进行扰动,跳出局部最优状态。实验表明,MOTS-PSO算法在收敛速度和收敛精度上,比PSO算法提高了27.1%、19.9%,比FA算法提高了22.09%、5.2%。进一步实验表明,MOTS-PSO算法在解决不同规模数量的任务调度时,比PSO、FA算法效果更优。  相似文献   

10.
随机动态规划(SDP)方法是水库优化调度的基本方法,但将其应用于包含有多年调节水库的水库群的优化调度时会引起"维数灾"问题,并且难以反映多年调节水库调节周期不定的特点。针对这种情况,本文提出多层次的改进遗传模拟退火优化算法(IGA-SA),把库群优化问题分解为第1层次的SDP优化与第2层次的IGA-SA优化,从而获得库群的优化调度结果,并应用于贵州乌江梯级水库群中长期发电优化调度研究中,取得较好的结果。实践表明,该方法可以克服随机动态规划应用中遇到的"维数灾"问题,并给包含有多年调节水库的水库群的优化调度问题研究提供了有效的工具。  相似文献   

11.
Nowadays due to development of distribution systems and increase in electricity demand, the use of distributed generation (DG) sources and capacitors banks in parallel are increased. Determining the installation location and capacity are two significant factors affecting network loss reduction and improving network performance. This paper, proposes an efficient hybrid method based on Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA) which can greatly envisaged with problems for optimal placement and sizing of DG sources and capacitor banks simultaneously. The objective function is power loss reduction, improving system voltage profile, increasing voltage stability index, load balancing and transmission and distribution relief capacity for both utilities and the customers.The proposed method is implemented on IEEE 33 bus and 69 bus radial distribution systems and the results are compared with GA/Particle swarm optimization (PSO) method. Test results show that the proposed method is more effective and has higher capability in finding optimum solutions.  相似文献   

12.
  总被引:29,自引:0,他引:29  
This paper presents the application of particle swarm optimization (PSO) technique and its variants to least-cost generation expansion planning (GEP) problem. The GEP problem is a highly constrained, combinatorial optimization problem that can be solved by complete enumeration. PSO is one of the swarm intelligence (SI) techniques, which use the group intelligence behavior along with individual intelligence to solve the combinatorial optimization problem. A novel ‘virtual mapping procedure’ (VMP) is introduced to enhance the effectiveness of the PSO approaches. Penalty function approach (PFA) is used to reduce the number of infeasible solutions in the subsequent iterations. In addition to simple PSO, many variants such as constriction factor approach (CFA), Lbest model, hybrid PSO (HPSO), stretched PSO (SPSO) and composite PSO (C-PSO) are also applied to test systems. The differential evolution (DE) technique is used for parameter setting of C-PSO. The PSO and its variants are applied to a synthetic test system of five types of candidate units with 6- and 14-year planning horizon. The results obtained are compared with dynamic programming (DP) in terms of speed and efficiency.  相似文献   

13.
王建勋  刘会金  陈兴 《电网技术》2011,35(8):168-173
单方面的网络重构或无功优化均不能实现最大程度的配电网优化,因此需要将两者综合考虑,为此提出了基于微分进化算法的配电网综合优化算法。为与无功优化的整数编码方式统一,网络重构采用编码长度最低的环路支路整数编码方式,以将网络重构和无功优化同时引入进化过程。同时将自适应变异及进化参数调整策略引入进化过程,以在确保获得最优解的同...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号