共查询到20条相似文献,搜索用时 15 毫秒
1.
C.M. Lapa D.P.F. de Souza F.M.L. Figueiredo F.M.B. Marques 《International Journal of Hydrogen Energy》2010
Yttrium and gadolinium-doped ceria-based electrolytes (20 at% dopant cation) with and without small Ga2O3-additions (0.5 mol%) were fired at peak temperatures of 1250 and 1300 °C, or following a two-step sintering profile including one peak temperature and subsequent dwell at 1150 °C, 10 h. All materials were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy in air, in the temperature range 200–800 °C. Average grain sizes in the range 150–250 nm and densifications up to about 94% were found dependent on the sintering profile and presence of Ga. The grain boundary arcs in the impedance spectra increased significantly with Ga-doping, cancelling the apparently positive role of Ga on bulk transport, evidenced mostly in the case of yttrium-doped materials. 相似文献
2.
Ana I.B. Rondão Sónia G. PatrícioFilipe M.L. Figueiredo Fernando M.B. Marques 《International Journal of Hydrogen Energy》2013
Ceria-based composites (ranging from 30 to 70 vol%) including a mixture of Li and Na carbonates (1:2 M ratio, respectively) were sequentially exposed to pure CO2, O2 and a mixture of 10 vol% H2 diluted in N2, at temperatures ranging from 300 to 580 °C, to study the role of composite/gas interaction on electrical performance. Impedance spectroscopy measurements performed under these working conditions were complemented by microstructural and structural characterization. Changes in conductivity and electrode impedance when changing the atmosphere from CO2 to O2 and to H2 confirmed changes in concentration and/or in mobility of charge carriers and electroactive species. Novel species identified either by X-ray diffraction (hydrated carbonates, only present at the surface of the samples), or by infrared spectroscopy (hydrogen carbonate ions), might be related to the observed conductivity enhancement under H2. 相似文献
3.
Ce0.9Gd0.1O1.95 with various Mg doping contents was synthesized by citric acid-nitrate low temperature combustion process and sintered under different conditions. The crystal structures, microstructures and electrical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and ac impedance spectroscopy. Low solubility of Mg2+ in Ce0.9Gd0.1O1.95 lattice was evidenced by XRD and FESEM micrographs. The samples sintered at 1300 °C exhibited the higher total conductivity than those sintered at 1100 and 1500 °C, with the maximum value of 1.48 × 10−2 S cm−1 (measured at 600 °C) at the Mg doping content of 6 mol%, corresponding to the minimum total activation energy (Etol) of 0.84 eV (150–400 °C). The effect of Mg doping on the electrical conductivity was significant particularly at higher sintering temperatures. At the sintering temperature of 1500 °C, the addition of Mg (10 mol%) enhanced the grain boundary conductivity by over 102 times comparing with that of undoped Ce0.9Gd0.1O1.95, which may be explained by the optimization of space charge layer due to the segregation of Mg2+ to the grain boundaries. 相似文献
4.
Ceria co-doped with Sm3+ and Nd3+ powders are successfully synthesized by citric acid–nitrate low-temperature combustion process. In order to optimize the electrical properties of the series of ceria co-doped with Sm3+ and Nd3+, the effects of co-doping, doping content and sintering conditions on grain and grain boundary conductivity are investigated in detail. For the series of Ce0.9(SmxNd1−x)0.1O1.95 (x = 0, 0.5, 1) and Ce1−x(Sm0.5Nd0.5)xOδ (x = 0.05, 0.10, 0.15, 0.20) sintered under the same condition, Ce0.9(Sm0.5Nd0.5)0.1O1.95 exhibits both higher grain and grain boundary conductivity. Compared with Ce0.9Gd0.1O1.95 and Ce0.8Sm0.2O1.9, Ce0.9(Sm0.5Nd0.5)0.1O1.95 sintered at 1350–1400 °C shows higher total conductivity with the value of 1.0 × 10−2 S cm−1 at 550 °C. In addition, it can be found the trends of grain and grain boundary activation energies of Ce1−x(Sm0.5Nd0.5)xOδ are both consistent with those of Ce1−xNdxOδ, but different from those of Ce1−xSmxOδ, which can be explained as: the local ordering of oxygen vacancies maybe occurs more easily in Nd-doped ceria than in Sm-doped ceria; the segregation amount of Sm3+ is more than that of Nd3+ to the grain boundaries in ceria co-doped with Sm3+ and Nd3+, which is confirmed by X-ray photoelectron spectroscopy (XPS). 相似文献
5.
Minoru Mizuhata Toshifumi OhashiAlexis Bienvenu Béléké 《International Journal of Hydrogen Energy》2012
The electrical, thermal and structural properties of composite electrolyte containing Ce0.9Gd0.1O1.95 (GDC) powder and (Li0.52Na0.48)2CO3 eutectics are investigated by AC impedance, differential thermal analysis and polarized Raman scattering spectroscopy. The system shows a dependence of the electrical conductivity upon the temperature. The transition point varies with the apparent average thickness of the liquid phase, while the activation energy, ΔEa, remains constant at any distance from the solid phase. Higher electrical conductivity was obtained for the GDC/(Li0.52Na0.48)2CO3 composite than that for α-Al2O3/(Li0.52Na0.48)2CO3. Even in the N2 or Air gas flow, the weight loss caused by decomposition of CO32− ion based on Lux–Flood equilibrium was rarely observed. The symmetric stretching mode of the polarized Raman spectra shows that carbonate ion maintains its D3h symmetry in the presence of ceria. A constant value of the depolarization ratio of the ν1(A′1) mode with regard to the apparent average thickness confirms that the symmetry of carbonate ions in the molten state is not altered by the presence of ceria powder. It was more stable than that for the system containing α-Al2O3 as a reference sample. These findings contribute to the understanding of the properties of ceria-based carbonate electrolyte for intermediate temperature solid oxide fuel cells. 相似文献
6.
K. RajeswariM. Buchi Suresh Dibyendu ChakravartyDibakar Das Roy Johnson 《International Journal of Hydrogen Energy》2012,37(1):511-517
Densification and micro-structural development of ultra fine 8 mol% yttria stabilized zirconia (8YSZ) nano powder were investigated systematically by varying the SPS sintering temperature at constant applied pressure of 50 MPa. A hundred fold decrease in average grain size ranging from 10 μm to 80 nm is observed on decreasing the SPS sintering temperature from 1200 °C to 1050 °C with >99% of theoretical densities. Impedance measurements on the samples indicated an enhancement in the ionic conductivity at 700 °C from 0.004 S/cm to 0.018 S/cm with decrease in grain size from 10 μm to 0.51 μm and a significant increase in conductivity from 0.018 S/cm to 0.068 S/cm on further reduction of grain size to 80 nm. A significant change in the grain-boundary conductivity is noticed on reducing the grain sizes to nano regime. The diverse microstructure with ultra fine grain size resulting from SPS at 1050 °C could contribute to the enhanced ionic conductivity, which is supported by the activation energy data. 相似文献
7.
Thermodynamic calculations have been made to predict the stability of solid oxide fuel cell (SOFC) anode materials when exposed to hydrogen sulphide (H2S) in hydrogen (H2) over a range of partial pressures of sulphur (pS2) and oxygen (pO2) representative of fuel cell operating conditions. The study focussed on the behaviour of nickel and ceria, which form the basis of nickel–gadolinium-doped ceria (Ni-CGO) anodes, often used as an active layer within SOFCs. The reaction of Ni with sulphur is predicted to become more favourable as temperature and hydrogen partial pressure (pH2) decrease. Ceria is shown to become increasingly non-stoichiometric (CeOn, n < 2) as pO2 decreases and temperature increases, and it is predicted that its reaction with sulphur becomes more favourable under these conditions. 相似文献
8.
Yingchao Dong Stuart HampshireJian-er Zhou Guangyao Meng 《International Journal of Hydrogen Energy》2011,36(8):5054-5066
Nano-sized Ce0.8Gd0.2O2−δ and Ce0.79Gd0.2Cu0.01O2−δ electrolyte powders were synthesized by the polyvinyl alcohol assisted combustion method, and then characterized by powder characteristics, sintering behaviors and electrical properties. The results demonstrate that the as-synthesized Ce0.8Gd0.2O2−δ and Ce0.79Gd0.2Cu0.01O2−δ possessed similar powder characteristics, including cubic fluorite crystalline structure, porous foamy morphology and agglomerated secondary particles composed of gas cavities and primary nano crystals. Nevertheless, after ball-milling these two powders exhibited quite different sintering abilities. A significant reduction of about 400 °C in densification temperature of Ce0.79Gd0.2Cu0.01O2−δ was obtained when compared with Ce0.8Gd0.2O2−δ. The Ce0.79Gd0.2Cu0.01O2−δ pellets sintered at 1000 °C and the Ce0.8Gd0.2O2−δ sintered at 1400 °C exhibited relative densities of 96.33% and 95.7%, respectively. The sintering of Ce0.79Gd0.2Cu0.01O2−δ was dominated by the liquid phase process, followed by the evaporation-condensation process, Moreover, Ce0.79Gd0.2Cu0.01O2−δ shows much higher conductivity of 0.026 S cm−1 than Ce0.8Gd0.2O2−δ (0.0065 S cm−1) at a testing temperature of 600 °C. 相似文献
9.
Horng-Yi Chang Yao-Ming WangChia-Hsin Lin Syh-Yuh Cheng 《Journal of power sources》2011,196(4):1704-1711
The citric acid-based combustion technique (SV) for powder preparation and the rapid microwave sintering (MW) process are used to lower the synthesizing temperature and to shorten the processing time then to modify the grain boundary resistance and oxygen vacancies mobility in multiple elements doped ceria-based electrolyte (LSBC). Nanoparticles of less than 50 nm with a pure fluorite structure are prepared by SV method at a low temperature of 600 °C. Microwave sintering lowers the sintering temperature to 1400 °C from the conventional sintering (CS) temperature of 1500 °C needed for solid-state (SS) prepared LSBC, and requires only 15 min of sintering time. The SV sample conventionally sintered at 1400 °C-6 h reaches a conductivity of 0.006 S cm−1. When the SV samples are microwave sintered at 1400 °C-15 min, they achieve a conductivity as high as 0.01 S cm−1 measured at 600 °C. Microwave sintering reduces the grain boundary resistance of both SS and SV samples. The migration enthalpy (Hm) of 0.66 eV in the SS-MW and SV-MW samples is similar to that of the fully densified SS-CS sample. The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte. 相似文献
10.
Seung-Seok Baek Naesung Lee Byung-Kook Kim Haejung Chang Sun-Ju Song Jun-Young Park 《International Journal of Hydrogen Energy》2012
Highly conductive Er0.2Bi0.8O1.5 (ESB) and rare-earth doped ceria solid oxide electrolytes (SOEs) at intermediate temperature (IT) continue to suffer disadvantages in terms of thermodynamic instability and significant electronic conduction, respectively, at low oxygen partial pressure for solid oxide fuel cell (SOFC) operations. It is therefore necessary to improve the low-temperature ionic conductivity in order to enhance the electrolytic domain of these materials and thereby mitigate cell efficiency dissipation by electronic conduction. In this work, an advanced multiphase carbonate composite material based on ceria has been developed to overcome this IT-SOE challenge. This advanced electrolyte is comprise of nanostructured neodymium-doped ceria (NDC) and 38 wt% (Li–0.5Na)2CO3 carbonate with a small amount of ESB phase. The addition of 2 wt% ESB in ceria-based materials decreases the grain boundary resistance of the SOEs in the IT range. Further, a small amount of highly conducting ESB phase in the NDC/[(Li–0.5Na)2CO3] composite electrolyte increases the overall conductivity of the composite SOEs. The NDC electrolyte containing 38 wt% carbonate shows the highest conductivity of 0.104 Scm−1 at 600 °C, while the conductivity is increased to 0.165 Scm−1 by the addition of 2 wt% ESB. In addition, the activation energy of the multiphase composite electrolytes (0.52 eV) is lower than that of the NDC/carbonates (0.65 eV) in the IT range. This is attributed to the effect of the physical properties of the NDC sample, induced by the light ESB doping, on the ionic conductivity, and this effect is closely associated with the grain boundary property. Furthermore, the interfacial effects of the multiphase materials also contribute to the improved conductivity of this advanced composite electrolyte. 相似文献
11.
12.
Bin Li 《Journal of power sources》2009,193(2):598-601
In order to introduce more conductive interfaces, the doped ceria-zirconia core-shell nanocomposites are synthesized via a simple and low-cost sol-gel process. Nitrates, citric acid and polyethylene glycol (PEG) are used as starting materials, and the compositions of the core and the shell are Ce0.9Gd0.1O1.95 (GDC) and 8 mol% Sc2O3 doped ZrO2 (ScDZ), respectively. The room-temperature ammonia co-precipitation method is used to prepare the core materials. X-ray diffraction (XRD) indicates that the average grain sizes of the core and shell materials are about 6 nm and 8 nm. The core-shell nanostructure with about 60 nm diameter GDC core (approximate) and about 20 nm thick ScDZ shell, is supported by the field-emission scanning electron microscopy (FESEM) and the transmission electron microscopy (TEM) results. The effects of PEG and the mechanisms during the process of forming the core-shell nanocomposites are discussed in detail. 相似文献
13.
M. Ajmal Khan Rizwan Raza Raquel. B. Lima M. Asharf Chaudhry E. Ahmed Ghazanfar Abbas 《International Journal of Hydrogen Energy》2013
Ceria-based electrolyte materials have great potential in low and intermediate temperature solid oxide fuel cell applications. In the present study, three types of ceria-based nano-composite electrolytes (LNK-SDC, LN-SDC and NK-SDC) were synthesized. One-step co-precipitation method was adopted and different techniques were applied to characterize the obtained ceria-based nano-composite electrolyte materials. TGA, XRD and SEM were used to analyze the thermal effect, crystal structure and morphology of the materials. Cubic fluorite structures have been observed in all composite electrolytes. Furthermore, the crystallite sizes of the LN-SDC, NK-SDC, LNK-SDC were calculated by Scherrer formula and found to be in the range 20 nm, 21 nm and 19 nm, respectively. These values emphasize a good agreement with the SEM results. The ionic conductivities were measured using EIS (Electrochemical Impedance Spectroscopy) with two-probe method and the activation energies were also calculated using Arrhenius plot. The maximum power density was achieved 484 mW/cm2 of LNK-SDC electrolyte at 570 °C using the LiCuZnNi oxide electrodes. 相似文献
14.
Solid electrolytes are the most important and indispensable part of a solid oxide fuel cell (SOFC) where hydrogen is used as one of the fuels to obtain electricity. Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 were chosen to be the base electrolytes. The effects of MgO and Nd2O3 as co-dopants on the electrical conductivity were investigated, respectively. For 4 mol% Mg-doped Ce0.9Gd0.1O1.95 or Ce0.9Sm0.1O1.95, MgO phases were detected by FESEM micrographs, which showed a very low solubility of Mg2+ in ceria lattice. The existence of MgO phases was observed to have negligible effect on the grain conductivity, but improve the grain boundary conductivity measured by ac impedance spectroscopy. However, when Nd2O3 was used as a co-dopant, XRD patterns and FESEM both indicated a pure cubic phase. Ce0.9Gd0.05Nd0.05O1.95 and Ce0.9Sm0.05Nd0.05O1.95 were found to exhibit higher grain conductivity, comparing with single-doped ceria. 相似文献
15.
《International Journal of Hydrogen Energy》2017,42(17):12601-12614
Microstructural parameters such as triple phase boundary (TPB) density, surface area density, connectivity and tortuosity of different phases strongly influence the performance of solid oxide fuel cells (SOFCs). In this study, the effect of the powder morphology on the microstructural parameters of a La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode is comprehensively examined using Kinetic Monte Carlo (KMC) simulations. A number of numerical samples consisting of spheres or clumped spheres are created using a Discrete Element Method (DEM), taking into account the powder morphology such as particle size, particle size distribution, particle aspect ratio and sphericity, and particle orientation. The DEM-generated numerical structures with different particle morphologies are submitted to the KMC simulations. Their effects on relative density, densification rate, surface area density, tortuosity factor of LSCF phase and tortuosity factor and connectivity of the pore phase are compared and analyzed. 相似文献
16.
Lanthanum silicate oxyapatite, La10Si6O27 is successfully synthesized by a water-based gel-casting technique. The effect of calcination and sintering temperatures on the conductivity is investigated in detail in the temperature range between 300 and 800 °C by the impedance spectroscopy. The highest oxygen ion conductivity is 1.50 × 10−3 S cm−1 at 500 °C and 3.46 × 10−2 S cm−1 at 800 °C for an apatite electrolyte sintered at 1650 °C, which is one order of magnitude higher than that synthesized by the conventional solid state reaction route under the same sintering conditions. The thermal expansion coefficient (TEC) of the as-synthesized apatite is 9.7 × 10−6 K−1. A solid oxide fuel cell using La10Si6O27 as an electrolyte shows an open circuit potential of 1.06 V and power output of 7.89 mW cm−2 at 800 °C. The results demonstrate the potential of the silicate oxyapatite materials synthesized by the gel-casting as an alternative electrolyte in solid oxide fuel cells. 相似文献
17.
Two typical electrolytes, i.e., 8YSZ (8 mol% yttria-stabilized zirconia) and CGO10 (10 mol% Gd-doped ceria), with Si contents of ∼30 ppm and ≥500 ppm were prepared, whose grain-boundary (GB) conductivities should be controlled by intrinsic (space-charge layer) and extrinsic (resistive siliceous films) effects, respectively. 1 at% FeO1.5 was loaded into these materials via a conventional mixed-oxide method. A comparative study was carried out to demonstrate how 1 at% Fe addition affected these materials with different levels of SiO2 impurities with respect to sintering, GB and GI (grain interior) conductivities. FeO1.5 was found to be a sintering promoter for both 8YSZ and CGO10 ceramics, but it is more effective to enhance the densification of ceria-based electrolytes. A reduction in sintering temperature of ∼200 °C for 1 at% Fe-doped CGO10 was achieved compared with ∼110 °C reduction for the 8YSZ with the same amount of Fe loading. The effect of FeO1.5 loading on the electrical conduction was found to be different, depending significantly on the impurity level and the types of electrolytes. In general, the loading of FeO1.5 is positive for ceria-based ceramics since FeO1.5 has a scavenging effect on SiO2 impurity with little effect on the GI conduction. Although the scavenging behavior of FeO1.5 was also found in the impure 8YSZ, it led to a significant reduction in the GI conductivity. 相似文献
18.
La0.8Sr0.2Co0.5Fe0.5O3−δ (LSCF) cathodes infiltrated with electrocatalytically active Pd and (Gd,Ce)O2 (GDC) nanoparticles are investigated as high performance cathodes for the O2 reduction reaction in intermediate temperature solid oxide fuel cells (IT-SOFCs). Incorporation of nano-sized Pd and GDC particles significantly reduces the electrode area specific resistance (ASR) as compared to the pure LSCF cathode; ASR is 0.1 Ω cm2 for the reaction on a LSCF cathode infiltrated with 1.2 mg cm−2 Pd and 0.06 Ω cm2 on a LSCF cathode infiltrated with 1.5 mg cm−2 GDC at 750 °C, which are all significantly smaller than 0.22 Ω cm2 obtained for the reaction on a conventional LSCF cathode. The activation energy of GDC- and Pd-impregnated LSCF cathodes is 157 and 176 kJ mol−1, respectively. The GDC-infiltrated LSCF cathode has a lower activation energy and higher electrocatalytic activity for the O2 reduction reaction, showing promising potential for applications in IT-SOFCs. 相似文献
19.
Antonin Faes Zacharie WuilleminPietro Tanasini Nicola AccardoStefano Modena Hans J. SchindlerMarco Cantoni Henning Lübbe Stefan DiethelmAïcha Hessler-Wyser Jan Van herle 《Journal of power sources》2011,196(21):8909-8917
One of the major limitations of the nickel (Ni) - yttria-stabilized zirconia (YSZ) anode support for solid oxide fuel cells (SOFC) is its low capability to withstand transients between reducing and oxidizing atmospheres (“RedOx” cycle), owing to the Ni-to-NiO volume expansion. This work presents results on different anode supports fabricated by tape casting. Three compositions are prepared, as the outcome of a preceding design of experiment approach. The NiO proportion is 40, 50 and 60 wt% of the anode composite.The anode support characteristics like shrinkage during sintering, in-situ conductivity at high temperature, electrochemical performance and tolerance against RedOx cycles have been measured. Performance up to 0.72 W cm−2 (0.62 V, 800 °C) is recorded for the 60 wt% NiO sample on small cells. The open circuit voltage is maintained within ±5 mV after 10 full RedOx cycles at 800 °C and one at 850 °C. Performances tend to be stabilized after one or multiple RedOx cycles. The microstructural observations show round Ni particles after the first reduction; after a RedOx cycle, the Ni particles include micro-porosities that are stable under humidified reducing atmosphere for more than 300 h. 相似文献
20.
The electrochemical performances of solid oxide fuel cells with thin yttria-stabilized zirconia (YSZ) electrolytes and YSZ/Ni anodes were studied with two intergrowth oxides cathodes (Sr2.7La0.3Fe1.4Co0.6O7−δ and LaSr3Fe1.5Co1.5O10−δ) and the results compared to a related perovskite cathode (La0.6Sr0.4Co0.5Fe0.5O3−δ). It was found that cells produced with LaSr3Fe1.5Co1.5O10−δ exhibited peak power densities close to 0.75 W cm−2, despite the relatively modest electrical conductivity of this compound. In contrast, cells produced with Sr2.7La0.3Fe1.4Co0.6O7−δ and La0.6Sr0.4Co0.5Fe0.5O3−δ cathodes both exhibited peak power densities of less than 0.4 W cm−2. The greater performance for the cells produced with LaSr3Fe1.5Co1.5O10−δ may be attributed to a higher catalytic activity for this compound or to an improved adhesion of the cathode to the interlayer/electrolyte. 相似文献