共查询到6条相似文献,搜索用时 15 毫秒
1.
Phytic acid is abundant in the fruits and seeds of many plants and is found in foliage to a lesser extent. Among its several properties, phytic acid is a potent chelator of essential minerals and proteins; thus, the possibility exists that heme-based enzymes such as cytochrome P450 monooxygenases in herbivores are detrimentally affected by phytic acid via chelation of dietary iron. Mortality, growth performance, and P450-mediated metabolism of xanthotoxin, a plant allelochemical, were examined in the presence of phytic acid in three lepidopteran species: a polyphagous seed-feeding species (Heliothis virescens), a polyphagous foliage-feeding species (Trichoplusia ni), and a species oligophagous on immature reproductive structures of two genera of Apiaceae (Depressaria pastinacella). While first instar H. virescens experienced no increase in mortality after 120 hours on a diet containing 1% phytic acid compared to a control diet, both T. ni and D. pastinacella experienced virtually complete mortality over the same time period. Ultimate instars of all three species experienced reductions in relative growth rates (RGR) and relative consumption rates (RCR) in the presence of phytic acid, although the only species to experience reduced digestive efficiency (ECI) was H. virescens. Cytochrome P450-mediated metabolism of xanthotoxin was reduced 60% in the presence of phytic acid in D. pastinacella, although metabolism remained unaffected in the two noctuids. These studies suggest a defensive function of phytic acid in addition to its primary functions of phosphorus storage, energy storage, and cell wall precursor source. 相似文献
2.
Jonathan C. Eya Vitalis O. Ukwuaba Rodrigue Yossa Ann L. Gannam 《International journal of molecular sciences》2015,16(4):7682-7706
A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish. 相似文献
3.
Effects of New Dietary Fiber from Japanese Apricot (Prunus mume Sieb. et Zucc.) on Gut Function and Intestinal Microflora in Adult Mice 总被引:1,自引:0,他引:1
Tamura M Ohnishi Y Kotani T Gato N 《International journal of molecular sciences》2011,12(4):2088-2099
Much attention has been focused recently on functional foods. Ume, the Japanese name for the apricot of Prunus mume Sieb. et Zucc., is an example of a Japanese traditional functional food. There are, however, few reports on the effects of fiber from this fruit on bowel function. With this objective, we prepared ume fiber to test the hypothesis that it can change gut function and intestinal flora in mice. Mice were fed an ume fiber (UF) or cellulose (CF) diet (control) for 40 days. The fecal weight, fecal lipids, plasma lipids and cecal composition of the microflora were analyzed. The amount of feces was significantly greater in the UF group than in the CF group (p < 0.01). The fecal lipids content (% DW) of the feces sampled on the final day of the experiment were significantly greater in the UF group than in the CF group (p < 0.01). Plasma non-esterified fatty acids (NEFA) concentrations tended to be lower in the UF compared to the CF group (p = 0.058). Occupation ratios of Bacteroides and Clostridium cluster IV were significantly greater in the cecal flora of the UF group. Our results suggest that ume fiber possesses the fecal lipid excretion effects and feces bulking effects. 相似文献
4.
Lucie Musilova Jakub Ridl Marketa Polivkova Tomas Macek Ondrej Uhlik 《International journal of molecular sciences》2016,17(8)
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. 相似文献
5.
Secondary metabolites in yellow and grey morphs of the soft coral Parerythropodium fulvum fulvum were compared between colonies collected from different depths and reef sites along the Red Sea. The concentrations of fulfulvene, the major metabolite in the yellow morph, varied considerably among samples, with significant differences between shallow and deep colonies. The concentrations of 5-hydroxy-8-methoxy-calamenene and 5-hydroxy-8-methoxy-calamenene-6-al, the major metabolites in the grey morph, also exhibited significant differences between shallow and deep colonies. The ecological implications of these variations in secondary metabolites are discussed. 相似文献
6.
Defense Tradeoffs in Fleshy Fruits: Effects of Resource Variation on Growth, Reproduction, and Fruit Secondary Chemistry in Solanum carolinense 总被引:1,自引:0,他引:1
A set of clones of 10 maternal plants was grown for three successive years (1998-2000) under two nitrogen treatments and two water treatments. Path analysis revealed strong direct and indirect effects of nitrogen treatment on growth and reproduction, but fruit morphological and chemical variables were not strongly affected. Fruit pulp chemistry varied only slightly across treatments despite the large differences in growth and reproduction associated with resource variation. Leaf and ripe fruit chemical contents were not significantly correlated across treatments, and maternal plants, and leaf chemical variables did not help explain fruit chemical variation when included as covariates in ANCOVA analyses, suggesting no physiological constraints of leaf chemistry on ripe fruit chemistry. Results suggest that, while maternal plants may vary somewhat in fruit chemistry, and fruit chemistry may vary somewhat depending upon environmental conditions, levels of primary and secondary metabolites within fruits are not best explained by supply-side hypotheses. Ripe fruit chemistry remained relatively constant in the face of drastically changing resource levels, suggesting an adaptive function and supporting the Defense Tradeoff hypothesis. Fruit quality, both in terms of nutritional make-up and putative defensive properties, was maintained despite strong effects on plant growth and reproduction. Because glycoalkaloids are general defense compounds, we conclude that ripe fruit chemistry most likely reflects a balance between selection for attraction of seed dispersers and defense against pests and pathogens. 相似文献