首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
太浦河泵站斜15°轴伸泵水力动态力分析   总被引:5,自引:1,他引:5  
太浦河泵站选用斜 1 5°轴伸式轴流泵 (以下简称斜 1 5°轴伸泵 ) ,为特低扬程、大流量的水泵。它具有叶轮直径大、水泵装置流态复杂、水泵轴承受力大等特点。本文针对太浦河泵站斜 1 5°轴伸泵 ,进行了水泵装置从吸入口至出口包括叶片、导叶、弯管段等在内的整体三维粘性流动分析 ,得到了流道内部不同工况下的流动特性如压力、速度分布规律及泵特性曲线 ,以及流道内部的旋涡分布和水力损失情况。同时进行了导叶和叶轮流动动静干涉引起的三维不稳定流动分析 ,得到了叶轮在不同工况下受到的轴向水推力及径向水推力在旋转过程中的变化规律 ,从而为轴承设计提供了比较准确的受力条件。该项研究对其它斜式泵的内部流态及受力分析也是一个很好的借鉴。  相似文献   

2.
基于非定常的RANS方程,采用滤波器湍流模型对某一轴流泵模型在不同工况下的内部流场进行数值计算。通过与模型泵水力性能试验结果进行对比,发现与标准k-ε模型相比,无论在最优工况点还是在不稳定的失速工况区,滤波器湍流模型具有较高的预测精度。利用沟槽流动控制技术对进口锥管进行结构优化,研究其对轴流泵水力性能以及叶轮进口前的速度场和压力脉动的影响。结果表明,沟槽流动控制技术能够减弱叶轮进口前的预旋,提高叶轮进口入流的均匀性,同时可以有效降低叶轮进口前强烈的低频压力脉动,从而改善失速工况下轴流泵的水力性能。  相似文献   

3.
采用三维湍流流动数值计算的方法,对泵轴倾角为15°、30°和45°的3种斜式进水流道的水力性能分别进行了较为深入的研究,并对3种泵轴倾角的斜式进水流道分别进行了流道模型试验研究.结果表明:3种泵轴倾角斜式进水流道内的流态平顺均匀、水力损失小、水力性能优异,可为水泵叶轮室进口提供近乎理想的流态;斜式进水流道出口的目标函数...  相似文献   

4.
沿江泵站承担了灌溉、排涝、水环境治理等双向引排水任务,受长江潮位影响,双向水泵装置经常运行至零扬程附近,实际流量超过设计值30%以上,流道水力损失增大,流态紊乱,易引起水力振动,影响机组运行安全。采用CFD技术对沿江某低扬程双向流道泵装置进行水流流动及压力脉动特性研究,并结合模型试验进行验证。研究表明:超低扬程工况下,泵装置进出水流道盲端存在较大回流,出水流道内回流强度较大,导致水力损失增加;进水流道内测点主频为6倍转频,次主频为1/8倍转频;出水流道内测点主频无明显规律,但幅值相近,低频脉动占主导地位。研究成果可为沿江泵站超低扬程工况下水泵装置水力振动研究提供参考。  相似文献   

5.
根据低扬程大型泵站泵装置出水流道的水力设计要求,修正了"泵段"的定义,计算了水泵模型测试段中进出水管道的水力损失,并对"泵段"效率进行了修正;根据修正后的"泵段"效率对南水北调东线工程3个泵站设计工况的"泵段效率"、流道效率和泵装置效率之间的关系进行了验证性计算。研究结果表明:"泵段"宜定义为由水泵叶轮和导叶体这两个最基本的过流部件组成;南水北调工程水泵模型同台测试提供的水泵模型综合特性曲线表达的是水泵模型测试段的水力性能,其中包含了测试段中进水管道和出水管道的水力损失;大型泵站泵装置中的"泵段"性能应在水泵模型测试段水力性能的基础上考虑进出水管道水力损失进行修正;由水泵模型测试段性能修正得到的"泵段"扬程和效率均较水泵模型测试段高,设计流量时的扬程修正值约为0.15m左右;效率修正值与水泵模型测试段扬程有关,水泵模型测试段扬程愈低,修正值愈大,其幅度约为(1~4)%。流道效率根据流道水力损失及泵装置扬程计算得到,根据流道效率和修正后的"泵段"效率对设计工况的泵装置效率进行预测,其结果与泵装置模型试验得到的结果相比小于1%。  相似文献   

6.
大型调水工程泵站的水泵型式常采用离心式,而低比转速离心泵在小流量工况下易产生驼峰,引发流动分离、进口回流、旋转失速等不稳定现象,造成大量能耗,在运行中可能出现不稳定工况,影响泵的安全运行。本文针对某泵站进行具体的参数选型,提出了2种方案。通过CFD建模、数值仿真计算、模型加工试验等手段,验证了通过叶轮优化来改善水泵的驼峰裕度,为大型离心泵的稳定运行,提供了设计参考。  相似文献   

7.
对角泵叶轮基本流态研究   总被引:1,自引:1,他引:0  
在介绍对角泵基本特征的基础上,运用计算流体动力学方法,对一组对角泵叶轮的基本流态进行了数值分析,对不同叶片夹角的对角泵叶轮纵断面、出口断面速度分布及叶片压力面静压力分布特性进行了定性比较和定量计算.研究发现,对应于不同的叶片夹角,对角泵叶轮的能量性能差异很大.轴流泵叶片对角布置后,离心力的作用使对角泵叶轮的扬程提高.与对应的轴流泵相比,对角泵的最优效率点向小流量方向偏移,高效区变宽.过大或过小的叶片夹角都不利于叶轮效率的提高,应通过优化设计确定最优夹角.计算结果表明,叶片夹角为150°的对角泵叶轮能获得较高的流量加权平均效率.随着叶片夹角和流量的减小,对角泵叶轮的功率不是增加而是减小,功率特性由轴流泵逐步向离心泵过渡.  相似文献   

8.
轴流泵在反向发电时,不同运行工况和几何过流形式可能会导致一定的水力不稳定现象。以某泵站双向轴流泵装置为研究对象,应用SST k-ω模型,对其开展双向发电全流道数值模拟。结果表明:额定转速下,轴流泵装置反向发电效率整体高于正向发电;最优工况下,与正向发电相比,反向发电在泵段有较合理的压力分布,流线相对平顺。正向发电导叶出口压力脉动稳定性较差,对比导叶段漩涡演变和叶轮受力变化规律得出,正向发电导叶内部的大尺度漩涡是引起导叶出口压力脉动不规律以及最优工况效率更低的原因,且是引起叶轮径向力更大的本质原因。研究结果可为泵站双向轴流泵装置及前(后)置固定导叶轴流泵装置在发电工况下的运行稳定性提供理论支撑和工程参考。  相似文献   

9.
非设计工况下虹吸式出水流道内流数值分析   总被引:4,自引:0,他引:4  
朱红耕 《水力发电学报》2006,25(6):140-144,148
采用非结构化网格和SIMPLEC算法,对非设计工况下虹吸式出水流道的内部流动进行了数值分析。结果表明,轴流泵后导叶出口断面流速分布不均匀,存在横向流速和剩余环量,与均匀、无旋和轴向出流假定有明显差别。在非设计工况下,虹吸式出水流道内部流态恶化,下降段和出口段的回流区范围增大,驼峰断面和出口断面轴向流速分布均匀度显著下降。在Q=3501/s时,出口断面左右两侧质量加权平均流速分别增大了93.39%和35.54%。研究还发现,流道右侧的流量大于流道左侧的流量,在p=2501/s及Q=4201/s时,左右侧流量比高达1:2.33。非设计工况下流道的水力损失恒大于相同流量时设计工况下的水力损失,左侧的水力损失大于右侧的水力损失,且不符合二次抛物线变化规律。在水泵最高效率点附近,设计工况与设计工况下水力损失的差值有最小值。  相似文献   

10.
刘超  杨帆  金燕 《水力发电学报》2014,33(5):198-203
为深入研究新型高效S形轴伸贯流泵装置流道内部流动特性,采用CFD技术对该泵装置进行了全流道三维定常流动计算,获得了在大流量、小流量和最优工况时泵装置的内部流场。结果表明:在叶片安放角0°的最优工况(泵装置计算最高效率为81%,试验最高效率82.57%,流量系数KQ=0.492,扬程系数KQ=0.830)时进水流道的速度加权平均角为88.8°,轴向速度分布均匀度达到97.51%,水力损失为3.89cm;泵装置流道效率达到98.5%。运行工况范围内,出水流道出口断面的最大速度为1.429 m/s,满足国家标准(GB50265-2010)的要求;在大流量工况时,出水流道的弯管段上侧出现了小范围的漩涡。与该泵装置物理模型试验结果比较可知,数值预测泵装置性能与试验的性能数据符合较好,该泵装置匀顺的整体流动形态使能量损失很小,泵装置性能优异。  相似文献   

11.
高比转速轴流泵广泛应用在防洪排涝等特殊场合,但其水力效率普遍偏低.为提高其水力效率,并达到节能效果,本文对比转速为1400轴流泵的叶轮与导叶采用正交试验进行水力优化,并探究优化前后泵的内流特性.先对轴流泵叶轮和导叶的几何形状进行参数化解析,对参数化后的控制尺寸设置控制因素,以水力效率为指标设计正交试验,并对正交试验结果...  相似文献   

12.
离心泵内诱导轮与叶轮的轴向相对位置会对叶轮内的流动产生影响,从而影响整台泵的性能。为研究诱导轮相对叶轮不同轴向位置下离心泵内部的不稳定流动特性及其对离心泵水力性能的影响,本文以某单级离心泵为研究对象,采用数值模拟方法初步探讨了诱导轮相对于叶轮在三种不同轴向位置下离心泵的内部流动特性,分析了其外部特性、叶轮所受的径向力、水压脉动特性及空化特性等。结果表明,针对本文研究的三种轴向位置而言,离心泵的扬程和效率随诱导轮和叶轮间轴向距离的增大逐渐提高,扬程的最大值较最小值增幅达1.8%,效率变化达4.3%;诱导轮和叶轮间的轴向相对位置对叶轮和径向导叶间的相互干涉有影响,从而影响叶轮所受径向力的大小和方向;轴向距离从0.05D1增加到0.1D1时,离心泵的空化性能明显提高;从0.1D1增加到0.15D1时,空化性能变差;改变轴向位置直接影响叶轮进口压力脉动特性。  相似文献   

13.
压力脉动是影响贯流泵稳定运行的关键因素之一,本文采用大涡模拟对其内部流场进行分析总结,研究表明:压力脉动主要受叶轮旋转及动静相互干扰的影响;叶轮外缘与壁面间隙的存在,使小部分流体会从高压压力面流向低压吸入面出现回流,而加剧了压力脉动的影响,其幅值为进口压力脉动幅值的38倍;在大流量和小流量下压力脉动幅值均大于设计工况下的压力脉动幅值,导叶的整流特性减弱了叶轮压力脉动的影响;非设计工况下,在叶片进口边处,压力脉动幅频谱幅值最大,水力激振与叶轮旋转的影响相互叠加,在小流量下幅频谱幅值最大约为设计工况的1.5倍,在大流量下约为1.1倍。  相似文献   

14.
导流器叶片进口安放角对潜水泵性能的影响   总被引:2,自引:0,他引:2  
导流器叶片进口安放角是影响潜水泵性能的重要几何参数,在导流器特性曲线理论分析的基础上,运用计算流体动力学理论对同一叶轮与不同进口安放角导流器组合后的潜水泵三维模型进行数值模拟,得到其性能曲线,并就安放角变化对潜水泵性能的影响规律进行分析,同时在水泵试验台上进行实测验证。结果表明:随着导叶片进口安放角的增大,潜水泵最佳工况点向大流量方向偏移。当导叶片进口安放角位于27~30时,潜水泵工作效率为75%~81%,处于较高值,相应工作流量为95~125m3/h,模拟值与实测值吻合较好。通过改变导流器叶片进口安放角,在一定工况范围内,潜水泵同样可以保持较高的效率,为增加其规格并扩大使用范围寻找出了一种新的途径。  相似文献   

15.
应用k-ε和k-ω相结合的SST湍流模型封闭控制方程,对立轴蜗壳式混流泵装置的内部流动结构进行数值模拟。采用全隐式网格耦合求解,计算中考虑了叶轮叶顶间隙的影响。通过计算获得了泵装置全流场,分析了蜗壳出水室的流态和叶轮的水力特性,预测了泵装置性能并与试验值进行了比较。结果表明:蜗壳出水室内的流动为轴向流动与环向旋转的合成流动,静压分布较对称,出口断面轴向流速分布均匀度和速度加权平均角相对较低;叶片表面的静压分布呈现较为清晰的规律,叶片表面静压分布比较均匀,压力面的静压整体上比吸力面要高;随着流量的增大,叶轮承受的轴向力渐小,而径向力则先减小后增大;数值模拟预测的性能结果与试验的性能结果相比较,前者高于后者,趋势基本一致。  相似文献   

16.
当离心泵在小流量工况运行且传输介质为气液两相流时,含气率达到某一值时,会发生喘振现象,导致泵的扬程突降。本文采用计算流体动力学分析方法对一气液两相流离心泵进行了研究,通过对外特性曲线进行分析,发现了学者们所提到的喘振现象。为了提高离心泵在气液两相小流量工况下的水力特性,引入一种空腔结构,分析其对气液两相离心泵内部流场的影响及喘振的改善作用。结果表明:在气液两相喘振工况下,空腔结构可以改善叶片正背面的压力分布,均匀气液两相在叶轮流道中的分布,有效减轻离心泵的气堵现象。因此,空腔结构不仅在结构上可以平衡叶轮、减轻泵的整体质量,还可以减轻流场中气液分离现象,避免喘振的发生,提高泵的水力性能。  相似文献   

17.
本文从理论上准确地推导了水泵转子入口处流速与压力的不均匀分布。其基本出发点是流动的势流特征以及在转子入口处流线分布的几何相似特性,即不随流量而变化。流线分布的几何相似特性决定了流速分布的几何特性并由几何参数G(s)与第一结构常数G_Ⅰ描述。由已知的流速分布,本文还推导了非额定工况下流体在转子入口处的冲击损失并因此而引入第二结构常数G_Ⅱ。两个结构常数的引入,第一次将解析计算的精度提高了多个数量级。由于流动的势流特征以及流速分布的几何特性,对水泵转子入口处流速的分析计算可以直接应用于混流式水轮机出口的速度分布。本文因此还进一步严谨地计算了欧拉方程中出口项的平均值(u_2c_(2u))。其中,两个结构常数以及综合结构常数再一次得到应用。本文所介绍的计算方法称为流线相似法(SSM)。  相似文献   

18.
循环水泵进水条件的优劣对循环水泵效率及是否出现汽蚀和振动有显著影响。针对某电站300 MW机组循环水泵振动问题,采用RNG湍流模型对其进水流道水力特性开展三维数值模拟研究,分析了进水流道整体水流流态、泵吸水喇叭口附近区域流场、泵体周围流速分布,并对其进行了整流优化改造方案研究。结果表明,循环水流道斜坡坡度较大,导致水流扩散不均匀,表面流速较大,在斜坡底面和进水池存在较大漩涡;泵吸水喇叭口截面水流严重不对称,出现较明显偏流,泵进水条件恶劣;采取有效整流消涡措施可以改善循环水流道水流流态,均匀流速,改善泵进水条件。  相似文献   

19.
叶轮空化是降低混流泵水力效率与使用寿命的重要原因之一。为进一步优化叶轮流道,改善混流泵的空化性能,基于计算流体力学方法对某混流式模型泵进行全流道汽液两相流非定常流动数值模拟,以分析0.5Q~1.0Q工况下混流式叶轮的空化特性。重点探究不同空化余量对空泡体积分数的影响,研究空泡的分布特点,捕捉空泡随时间的变化规律。结果表明,在叶轮背面进口边附近最先初生空化,体积组分大的空泡多集中于叶片头部,若空化余量足够低,整个叶轮流道将被空泡占据。随着流量的降低,混流泵的临界空化余量值有所下降,但流量越低空泡严重发展的速度越快,且空泡含量的变化成指数函数增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号