首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

2.
Three iterative methods for the numerical determination of stress intensity factors at crack tips (by using the method of singular integral equations with Cauchy-type kernels) are proposed. These methods are based on the Neumann iterative method for the solution of Fredholm integral equations of the second kind. Two of these methods are essentially used for the solution of the system of linear algebraic equations to which the singular integral equation is reduced when the direct Lobatto-Chebyshev method is used for its approximate solution, whereas the third method is a generalization of the first two and is related directly to the singular integral equation to be solved. The proposed methods are useful for the determination of stress intensity factors at crack tips. Some numerical results obtained in a crack problem show the effectiveness of all three methods.  相似文献   

3.
The solution of crack problems in plane or antiplane elasticity can be reduced to the solution of a singular integral equation along the cracks. In this paper the Radau-Chebyshev method of numerical integration and solution of singular integral equations is modified, through a variable transformation, so as to become applicable to the numerical solution of singular integral equations along semi-infinite intervals, as happens in the case of semi-infinite cracks, and the direct determination of stress intensity factors at the crack tips. This technique presents considerable advantages over the analogous technique based on the Gauss-Hermite numerical integration rule. Finally, the method is applied to the problems of (i) a periodic array of parallel semi-infinite straight cracks in plane elasticity, (ii) a similar array of curvilinear cracks, (iii) a straight semi-infinite crack normal to a bimaterial interface in antiplane elasticity and (iv) a similar crack in plane elasticity; in all four applications appropriate geometry and loading conditions have been assumed. The convergence of the numerical results obtained for the stress intensity factors is seen to be very good.  相似文献   

4.
A new boundary integral equation method of three-dimensional crack analysis   总被引:2,自引:0,他引:2  
Introducing the mode II and mode III dislocation densities W 2(y) and W 3(y) of two variables, a new boundary integral equation method is proposed for the problem of a plane crack of arbitrary shape in a three-dimensional infinite elastic body under arbitrary unsymmetric loads. The fundamental stress solutions for three-dimensional crack analysis and the limiting formulas of stress intensity factors are derived. The problem is reduced to solving three two-dimensional singular boundary integral equations. The analytic solution of the axisymmetric problem of a circular crack under the unsymmetric loads is obtained. Some numerical examples of an elliptical crack or a semielliptical crack are given. The present formulations are of basic significance for further analytic or numerical analysis of three-dimensional crack problems.  相似文献   

5.
In this study, the stress intensity factors for any number of interface cracks are calculated for various spacings, elastic constants and number of cracks and the interaction effect of interface cracks is discussed. The problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, the unknown functions of the body force densities which satisfy the boundary conditions are expressed by the products of fundamental density functions and power series. Here, the fundamental density functions are chosen to express the stress field due to a single interface crack exactly. The accuracy of the present analysis is verified by comparing the present results with the results obtained by other researchers and examining the compliance with boundary conditions. The calculation shows that the present method gives rapidly converging numerical results for those problems as well as ordinary crack problems in homogeneous materials. The interaction effect of interface crack appears in a similar way to ordinary collinear cracks having the same geometrical condition and the maximum stress intensity factor is shown to be linearly related to the reciprocal of number of interface cracks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper a singular integral equation method is applied to calculate the distribution of stress intensity factor along the crack front of a 3D rectangular crack. The stress field induced by a body force doublet in an infinite body is used as the fundamental solution. Then, the problem is formulated as an integral equation with a singularity of the form of r –3. In solving the integral equation, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function, which expresses stress singularity along the crack front in an infinite body. The calculation shows that the present method gives smooth variations of stress intensity factors along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary.  相似文献   

7.
《Engineering Fracture Mechanics》2004,71(9-10):1289-1305
In this paper the scattering of antiplane shear waves by a kinked crack for a linearly elastic medium is considered. In order to solve the proposed problem, at first the broken crack problem is reduced to two coupled single cracks. Fourier integral transform method is employed to calculate the scattered field of a single crack. In order to derive the Cauchy type integral equations of a broken crack and analyze the singular stresses at the breakpoint, the scattered field of a single crack is separated into a singular part and a bounded part. The single crack solution is applied to derive the generalized Cauchy type integral equations of a broken crack. The singular stress and singular stress order are analyzed in the paper and the dynamic stress intensity factor (DSIF) at breakpoint is defined. Numerical solution of the obtained Cauchy type integral equations gives the DSIF at the crack tips and at the breakpoint. Comparison of the present results in some special cases with the known results confirms the proposed method. Some typical numerical results and corresponding analysis are presented at the end of the paper.  相似文献   

8.
The present study investigates a numerical algorithm for solving systems of Cauchy singular integral equations of the second kind such as those which often occur in the analysis of interface crack problems. The algorithm takes advantage of many standard subroutines for performing numerical integrations and can be easily applied to equations which are defined over different intervals of the dependent variable. The solution technique is illustrated by analyzing two homogeneous center cracked panels: one loaded in tension and the other loaded in shear and bending. In the second example problem, the presence of crack face friction strongly couples the underlying singular integral equations. The numerical results are compared to closed form elasticity solutions and are shown to be extremely accurate. In addition, the study also illustrates the feasibility of using various assumed forms of the undetermined functions. By assuming these slightly altered forms, many rather complex problems are either solved directly or reduced in complexity.  相似文献   

9.
Determination of the stress intensity factors of cracks is a fundamental issue for assessing the performance safety and predicting the service lifetime of engineering structures. In the present paper, a dislocation-based semi-analytical method is presented by integrating the continuous dislocation model with the finite element method together. Using the superposition principle, a two-dimensional crack problem in a finite elastic body is reduced to the solution of a set of coupled singular integral equations and the calculation of the stress fields of a body which has the same shape as the original one but has no crack. It can easily solve crack problems of structures with arbitrary shape, and the calculated stress intensity factors show almost no dependence upon the finite element mesh. Some representative examples are given to illustrate the efficacy and accuracy of this novel numerical method. Only two-dimensional cases are addressed here, but this method can be extended to three-dimensional problems.  相似文献   

10.
Maximum stress intensity factors of a surface crack usually appear at the deepest point of the crack, or a certain point along crack front near the free surface depending on the aspect ratio of the crack. However, generally it has been difficult to obtain smooth distributions of stress intensity factors along the crack front accurately due to the effect of corner point singularity. It is known that the stress singularity at a corner point where the front of 3 D cracks intersect free surface is depend on Poisson's ratio and different from the one of ordinary crack. In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3-D semi-elliptical surface crack in a semi-infinite body under mixed mode loading. The body force method is used to formulate the problem as a system of singular integral equations with singularities of the form r −3 using the stress field induced by a force doublet in a semi-infinite body as fundamental solution. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately. Distributions of stress intensity factors are indicated in tables and figures with varying the elliptical shape and Poisson's ratio.  相似文献   

11.
In this paper, numerical solutions of the singular integral equations of the body force method in the crack problems are discussed. The stress fields induced by two kinds of displacement discontinuity are used as fundamental solutions. Then, the problem is formulated as a hypersingular integral equation with the singularity of the form r 2. In the numerical calculation, two kinds of unknown functions are approximated by the products of the fundamental density function and the Chebyshev polynomials. As examples, the stress intensity factors of the oblique edge crack, kinked crack, branched crack and zig-zag crack are analyzed. The calculation shows that the present method gives accurate results even for the extremely oblique edge crack and kinked crack with extremely short bend which has been difficult to analyze by the previous method using the approximation by the products of the fundamental density function and the stepped functions etc.  相似文献   

12.
The singular function boundary integral method (SFBIM) originally developed for Laplacian problems with boundary singularities is extended for solving two-dimensional fracture problems formulated in terms of the Airy stress function. Our goal is the accurate, direct computation of the associated stress intensity factors, which appear as coefficients in the asymptotic expansion of the solution near the crack tip. In the SFBIM, the leading terms of the asymptotic solution are used to approximate the solution and to weight the governing biharmonic equation in the Galerkin sense. The discretized equations are reduced to boundary integrals by means of Green's theorem and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The numerical results on a model problem show that the method converges extremely fast and yields accurate estimates of the leading stress intensity factors.  相似文献   

13.
In this paper a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D surface crack. Stress field induced by body force doublet in a semi infinite body is used as a fundamental solution. Then the problem is formulated as an integral equation with a singularity of the form of r -3. In solving the integral equations, the unknown functions of body force densities are approximated by the product of a polynomial and a fundamental density function; that is, the exact density distribution to make an elliptical crack in an infinite body. The calculation shows that the present method gives the smooth variation of stress intensity factors along the crack front and crack opening displacement along the crack surface for various aspect ratios and Poisson's ratio. The present method gives rapidly converging numerical results and highly satisfactory boundary conditions throughout the crack boundary.  相似文献   

14.
The method of singular integral equations was applied to determine the stress intensity factors for a system of cracks emanating from the vertex of an infinite rounded V-notch subjected to symmetric loading. The numerical values were obtained for two cases—the case of a single crack and the case of a system of two cracks of equal length. The influence of the rounding radius of the vertex of the notch and its opening angle on the stress intensity factors at the crack tips was analyzed. The solution obtained as a result has a general nature—the stress intensity factors at the crack tip are expressed as a function of the V-notch stress intensity factor and, hence, this solution could be treated as an asymptotic relation for finite bodies with deep V-notches subjected to symmetric loads.  相似文献   

15.
Solution of the flat crack problems in shear mode is presented. The least potential energy principle is used to solve the problems. In the solution a family of the crack opening displacements (COD) with some undermined coefficients is assumed. The strain energy stored in body is expressed in the form of a quadratic form with some undetermined coefficients. In the formulation of the quadratic form, the differential–integral equation for the flat crack problem is used. After using the least potential energy principle, the coefficients in the family of COD can be determined and the crack opening displacements can be evaluated immediately. The stress intensity factors along the crack border can be obtained from the known crack opening displacements. A particular feature of the present method is that no singular integral is involved in computation. Several numerical examples are given with the calculated stress intensity factors along the crack border. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method for the direct determination of stress intensity factors at crack tips from the numerical solution of the corresponding singular integral equations is proposed. This method is based on the Gauss-Chebyshev method for the numerical solution of singular integral equations and is shown to be equivalent to the Lobatto-Chebyshev method for the numerical solution of the same class of equations.  相似文献   

17.
The paper presents a computational approach and numerical data which facilitate the use of the smeared-tip method for cohesive fracture in large enough structures. In the recently developed K-version of the smeared tip method, the large-size asymptotic profile of the stress intensity factor density along a cohesive crack is considered as a material characteristic, which is uniquely related to the softening stress-displacement law of the cohesive crack. After reviewing the K-version, an accurate and efficient numerical algorithm for the computation of this asymptotic profile is presented. The algorithm is based on solving a singular Abel's integral equation. The profiles corresponding to various typical softening stress-displacement laws of the cohesive crack model are computed, tabulated and plotted. The profiles for a certain range of other typical softening laws can be approximately obtained by interpolation from the tables. Knowing the profile, one can obtain with the smeared-tip method an analytical expression for the large-size solution to fracture problems, including the first two asymptotic terms of the size effect law. Consequently, numerical solutions of the integral equations of the cohesive crack model as well as finite element simulations of the cohesive crack are made superfluous. However, when the fracture process zone is attached to a notch or to the body surface and the cohesive zone ends with a stress jump, the solution is expected to be accurate only for large-enough structures.  相似文献   

18.
Savruk  M. P.  Osechko  A. M. 《Materials Science》2003,39(5):658-671
On the basis of singular integral equations, we propose a new method for the solution of antiplane problems of elasticity theory for bodies with a system of polygonal cracks with regard for the singularities of stresses at the corner points. The modified singular integral equations have continuous regular kernels and right-hand sides, i.e., belong to the same type as in the case of smooth boundary contours. A numerical solution of these equations is found by the method of mechanical quadratures. The values of the stress intensity factors at the corner points and tips of both a three-link polygonal crack and a system of two two-link polygonal cracks in an infinite body are presented. The limiting case of two cracks which form a rhombic hole is also analyzed.  相似文献   

19.
In this paper, the numerical solution of the hypersingular integral equation using the body force method in curved crack problems is presented. In the body force method, the stress fields induced by two kinds of standard set of force doublets are used as fundamental solutions. Then, the problem is formulated as a system of integral equations with the singularity of the form r –2. In the numerical calculation, two kinds of unknown functions are approximated by the products of the fundamental density functions and power series. The calculation shows that the present method gives rapidly converging numerical results for curved cracks under various geometrical conditions. In addition, a method of evaluation of the stress intensity factors for arbitrary shaped curved cracks is proposed using the approximate replacement to a simple straight crack.  相似文献   

20.
Using the single crack solutions and the regular solution of harmonic function, the bending problem of a cracked cylinder is reduced to solving two sets of mixed-type integral equations which can be solved by combining the numerical method of the singular integral equation with the boundary element method. Several numerical examples are calculated and the stress intensity factors are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号