首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以MgO、Al2O3和ZrO粉末为载体,金属Ni为活性组分,金属元素Co、La等为助剂,制备超高温氨分解催化剂;采用X射线衍射(XRD)、BET比表面积测试(BET)、H2程序升温还原(H2-TPR)、透射电子显微镜(TEM)对其结构进行表征,并在催化剂评价装置上对其氨分解活性进行评价,考察不同金属元素对催化剂结构和性能的影响。XRD结果表明:制备的几种催化剂中均存在NiAl2O4尖晶石相;金属元素可以促使生成的NiAl2O4尖晶石的晶型更加完整;La对晶型的贡献大于Co和Zr。H2-TPR结果表明:加入金属元素La后,催化剂中形成了更多的晶相NiAl2O4,而加入金属元素Co后,生成了与载体具有强相互作用的类尖晶石结构的固溶体。BET及TEM结果表明:金属元素La有助于提高Ni物种在催化剂表面的分散度和浓度,形成更小的表面Ni粒子,从而提高Ni的活性位分布。在反应温度1 200 ℃、体积空速1 228 h-1的条件下,相比于Ni/Mg-Al和CoNi/ZrMg-Al催化剂,LaNi/ZrMg-Al催化剂表现出更好的高温耐磨损性能、抗烧结性能和热稳定性能。  相似文献   

2.
通过对共沉淀法制备镍基催化剂前驱体的优化处理得到了具有纳米结构的Ni/Al2O3催化剂,并在常压连续微反装置上分别对其氨分解反应活性进行评价。采用BET、XRD、TEM、H2-TPR和NH3-TPSR表征方法对催化剂物化性质进行表征。结果表明,镍基催化剂前驱体优化处理后,提高了催化剂的比表面积、平均孔径,提高了活性组分的分散度和还原度,有效地调变了活性组分与载体之间的相互作用,降低了催化剂表面N原子的脱附温度,最终提高了催化剂的氨分解反应活性。  相似文献   

3.
氢能作为清洁环保的可再生能源受到全世界的关注。但氢极低的体积能量密度及易燃易爆的特点,给氢气的大规模储运带来困难和危险。氨是一种无碳的氢载体,不仅具有较高的体积和质量能量密度,还有较成熟的储存和运输技术。氨的现场制氢可以解决氢气储存和运输问题,所以氨气储氢正受到人们的广泛关注。氨分解最高效的催化剂是Ru基催化剂,但由于其高昂的价格无法实现大规模应用。在非贵金属基催化剂中,Ni基催化剂的活性最高,且其成本相对较低,被认为十分具有应用潜力。然而,Ru基和Ni基催化体系在活性和稳定性等方面仍存在一些挑战。本文综述了氨分解催化剂的最新研究进展,包括Ru基催化剂、非贵金属Fe基和Ni基催化剂及双金属催化剂等,并对目前文献中的反应机理进行了梳理。  相似文献   

4.
氢能作为二次能源在可再生能源和化石能源发展中将发挥重要的桥梁和纽带作用,但其推广应用受限于氢气储存成本高和运输效率低等因素。采用氨作为储氢载体,其储氢密度高、运输技术成熟,方便分布式现场制氢就地供应,避免氢气储运带来的困扰。氨载氢技术推广应用关键在于氨分解催化剂的发展水平。对近年来用于氨分解的Ru基催化剂、非贵金属催化剂、双金属催化剂和氮化物/碳化物催化剂研究进展进行总结,分析了各种催化剂上氨分解的反应机理以及活性金属、载体、助剂和制备方法对催化剂物化性质和催化性能的影响,指出了不同类型催化剂的优势和不足,并对其未来研究方向进行了展望。  相似文献   

5.
卢春山  马磊  刘武灿  李小年 《石油化工》2004,33(Z1):1388-1389
采用氨程序升温氮化还原法,系统地研究了过渡金属氧化物氮化过程中NH3空速、升温速率和前体焙烧温度及时间对负载型过渡金属氮化物催化剂氨分解活性的影响.实验结果表明,当氮化条件为2500 h-1、2℃/min、600℃、5 h时,CoxMoyN/γ-Al2O3催化剂表现出最好的氨分解活性.适宜的氨空速、升温速率和焙烧条件可能最有利于氨分解反应所需的金属氮化物活性中心的形成.  相似文献   

6.
高效镍基氨分解催化体系中载体作用的研究   总被引:2,自引:0,他引:2  
 选用无水乙醇为溶剂,采用浸渍法制备了纳米结构的Ni/Al2O3、Ni/La-Al2O3、Ni/MgO和Ni/TiO2催化剂,并在常压连续微反装置上分别对其氨分解反应活性进行评价。结果表明,4种负载型镍催化剂的活性顺序为Ni/La-Al2O3 > Ni/Al2O3 >> Ni/TiO2 > Ni/MgO。当反应温度为600℃时,Ni/La-Al2O3催化剂上H2的生成速率可达873 mmol/g(Ni)min。对不同Ni负载量的Ni/La-Al2O3催化剂进行XRD分析表明,即使Ni负载量高达14%,活性组分在载体上仍然呈高度分散状态。载体对镍基氨分解催化剂的表观活化能具有显著影响。其中,当Ni负载量为3%时,Ni/Al2O3、Ni/La-Al2O3、Ni/MgO和Ni/TiO2催化剂的反应活化能分别为108、119、102和120 kJ/mol。当载体相同时,催化剂氨分解活性主要受反应活化能的影响,反应活化能越高,氨分解活性越低。  相似文献   

7.
采用等离子体技术强化制备了Ni/MCM-41催化剂,并采用XRD、BET、H2-TPR和TGA对催化剂进行了表征。考察了等离子体处理功率、处理时间、处理方式、处理气氛对CO_2重整甲烷反应的影响。结果表明,等离子体处理Ni/MCM-41催化剂在CO_2重整甲烷反应中表现出较优的催化性能,在反应温度为750℃时,CH_4和CO_2转化率分别为92.6%和87.9%,较未处理的催化剂提高了27.2%和21.1%。  相似文献   

8.
载体和助剂对NiO催化剂氨分解反应的影响   总被引:7,自引:1,他引:6  
研究了负载Ni的MgO、γ Al2 O3 和Si Al陶瓷 3种催化剂的NH3 分解反应活性。活性评价结果表明 ,3种催化剂的活性顺序为Ni/MgO >Ni/Al2 O3 >Ni/Si Al陶瓷。XRD分析表明 ,NiO负载量为 10 %时 ,3种催化剂的表面物相分别为NiMgO2 固熔体、NiAl2 O4尖晶石和游离的NiO ,说明NiO与不同载体的相互作用对催化剂的NH3 分解活性影响很大。对于Ni/MgO催化剂 ,5 5 0℃时NH3 转化率是 5 0 % ,在 6 5 0℃时达到 10 0 %。Ni/MgO催化剂表面物相主要是NiMgO2 固熔体 ,结合H2 TPR结果可以看出 ,难以还原的NiMgO2 表面相是催化剂的活性相。当w (NiO) <10 %时 ,有利于形成NiMgO2 固熔体 ,从而提高催化剂活性 ;当w(NiO) >10 %时 ,由于游离的NiO晶体的出现导致了活性的降低。加入助剂La ,使形成了紧密的La O Ni结构单元 ,加速了NH3 在催化剂表面的解离吸附 ,可提高催化剂的低温活性。与Ni/MgO催化剂相比 ,Ni/Al2 O3 催化剂的稳定性较好 ,在连续反应 4 8h后 ,NH3 转化率仍是 10 0 % ,而Ni/MgO却有所降低。TPR和XRD表征结果证明 ,比较稳定的NiAl2 O4是催化剂的活性相。  相似文献   

9.
《石油化工》2016,45(10):1180
以六水合硝酸镍和碳酸氢氨为原料、氨水为调节剂,采用水热沉淀法,在不同老化温度下制备了多孔纳米NiO材料;采用XRD、SEM、TEM和N_2吸附-脱附等方法对催化剂进行了表征,并考察了催化剂在氨分解制氢反应中的性能。实验结果表明,在120℃老化温度下制备的NiO分散性良好,平均粒径10.8 nm、比表面积62.2 m~2/g、孔体积0.112 cm~3/g、孔径4.62 nm。在氨分解制氢反应中,120℃老化的NiO催化剂在700℃下的氢气产率为27.87 mmol/(g·min)、氨转化率为83.25%、计算得出的活化能为55.11kJ/mol,具有良好的催化活性。多孔纳米NiO的合成过程易于操作,无需加入表面活性剂,对环境无污染。  相似文献   

10.
采用等体积浸渍法结合程序升温还原技术制备了一系列碳纳米管负载的钴钼氮化物催化剂,考察了氮化空速、氮化气比例等制备条件对其催化性能的影响;结合XRD、BET、元素分析等表征手段,研究了催化剂的物化性能。研究结果表明:在XRD图谱中出现了Co3Mo3N的微弱衍射峰;元素分析结果表明催化剂结构中的确有N元素的引入;氮化空速、...  相似文献   

11.
采用饱和浸渍法制备了Ni/Y双功能催化剂,考察了Ni负载量对催化剂性能的影响。通过N2物理吸附(BET)、X射线衍射(XRD)、核磁共振(NMR)、透射电镜(TEM)等技术对催化剂结构进行了表征。结果表明:随着Ni负载量的增加,催化剂结晶度、比表面积、孔体积和B酸量均减小,而催化剂临氢再生性能则随着Ni负载量的增大先增大后减小,Ni负载量为2.0%的2Ni/Y催化剂临氢再生性能最好,可使催化剂寿命恢复到初始寿命的92.8%;随着负载量的增加,Ni活性中心数增加,进而再生性能增加;但金属负载量过大,Ni分散性变差,造成Ni颗粒团聚长大,催化剂再生性能变差。  相似文献   

12.
采用酸法制备镁铝尖晶石(MAS)载体,以等体积浸渍法制备Cu-Ce-O/MAS催化裂化脱硝催化剂,使用XRD,BET,H2-TPR等手段对样品进行表征,小型脱硝评价装置评价催化剂的脱硝性能。结果表明:当浓盐酸与Al2O3摩尔比为0.15、MgO与Al2O3摩尔比为1.0时制得的MAS载体结晶良好,比表面积和孔体积分别为149.8 m2/g和0.55 mL/g;Cu-Ce-O/MAS脱硝催化剂的比表面积和孔体积分别为135.2 m2/g和0.59 mL/g;活性氧化物在MAS表面分散程度高,还原峰温度低;脱硝反应中Cu-Ce-O/MAS催化剂的起始反应温度低,转化率在250 ℃时达到100%。  相似文献   

13.
采用凝胶渗透色谱(GPC)、核磁共振分析(13C NMR)、DSC热分级等技术研究了茂金属催化剂和铬系催化剂PE管材料的分子结构,并对DGDB2480H、QHM22F这2种管材料的静液压性能进行了测试。结果表明,QHM22F熔融温度不高,但高温条件下的静液压强度远高于DGDB2480H。由于共聚单体己烯-1在主链上的分布差异导致了两者片晶厚度分布的差异,由此导致PE管材制品在静液压性能上的差异,所以DGDB2480H不能作为PE-RT管材料用做冷热水的输送。  相似文献   

14.
 研究了以改性骨架Ni催化剂液相催化乙腈加氢制备乙胺的工艺. 考察了Ti改性骨架Ni催化剂中Ti/Ni摩尔比, 反应体系中NaOH助剂的加入量和加氢反应温度、H2压力、搅拌速率等因素对改性骨架Ni催化乙腈液相加氢制备乙胺反应的影响. 确定了Ni改性骨架Ni催化剂最适宜的Ti/Ni摩尔比和催化乙腈加氢制备乙胺的最佳工艺条件, 并初步探讨了Ti改性骨架Ni催化剂对乙腈催化加氢反应的影响机制. 结果表明, 在Ti/Ni摩尔比为0.012的改性骨架Ni催化剂作用下, 以水作溶剂, NaOH助剂的加入量为0.20g/l, 在反应温度333~343K、H2压力1.0MPa、搅拌速率1000r/min的反应条件下, 乙腈的转化率达到100%, 乙胺的选择性可达75.6%. 此外, 还根据Ti改性骨架Ni催化剂液相催化乙腈加氢反应中重复使用的情况考察了其稳定性.  相似文献   

15.
 建立高分辨电感耦合等离子体质谱法(HR-ICP-MS)测定流化催化裂化(FCC)催化剂样品中Na、Mg、Al、P、Ca、V、Fe、Ni、Cu、As、Sb、Pb等12种微量金属元素的方法。样品用HNO3+HCl经微波消解后,试液直接用HR-ICP-MS法同时测定上述12种元素,在高分辨质谱测量模式下避免了大量的谱干扰。详细地研究了样品消解液所产生的基体效应,以Sc、Y、In、Bi作为内标元素校正了基体效应,讨论和确定了实验的最佳测定条件。结果表明,12种微量元素的检出限在0.022~62μg/l之间,回收率在87.6%~106.4%之间,相对标准偏差(RSD)小于3.5%。方法准确、快速、简便,应用于FCC催化剂中微量元素的测定,满意结果。  相似文献   

16.
以钼酸铵和硝酸镍为原料,采用共沉淀法合成镍钼金属氧化物,再经过程序升温氮化反应合成镍钼双金属氮化物。利用XRD,Visible-Raman,FTIR,H2-TPR对镍钼氧化物及氮化物晶体结构及氧化还原性进行表征,并考察了丙烷在镍钼氮化物催化剂上的氨氧化反应性能。结果表明:通过控制化学试剂镍钼配比能够定向合成Ni2Mo3N或定向合成g-Mo2N和Ni2Mo3N两相共存的镍钼氮化物;两相共存的镍钼氮化物催化剂能够产生相互协同作用,有利于催化丙烷氨氧化反应,其催化活性和丙烯腈选择性明显优于单一晶相的g-Mo2N或Ni2Mo3N;由镍钼摩尔比为3/2的化学试剂制得的镍钼氮化物催化剂表现出最优的催化性能,在773 K时丙烷转化率为75.0%,丙烯腈选择性为38.6%,产率为28.95%。  相似文献   

17.
采用GPC、13C NMR、SSA、落锤冲击试验、耐环境应力开裂试验分析研究茂金属催化剂和钛系催化剂PE滚塑料的结构与性能.结果 表明:相对钛系催化剂滚塑料PE-2,茂金属催化剂滚塑料mPE-1的PD较窄、分子链支化点少,易形成较厚片晶,片晶厚度分布均匀,力学性能佳;优异的结构性能,使茂金属催化剂滚塑料mPE-1具有优...  相似文献   

18.
分别采用浸渍法和混捏法对载体进行碱性助剂改性,浸渍法制备出Pd/Al2O3-TiO2催化剂;采用BET、XRD、Py-IR、NH3-TPD等方法对载体和催化剂进行表征;以含炔碳四馏分为原料,考察碱性助剂改性对Pd/Al2O3-TiO2催化剂选择性加氢活性和选择性的影响。结果表明:改性方法对载体的晶相结构没有影响,载体的XRD谱图均存在明显的锐钛矿和氧化铝特征峰;两种改性方法相比,混捏法改性载体的孔容、平均孔径和最可几孔径较大,总酸量、中强酸量和强酸量较低,有助于提高加氢催化剂的选择性和稳定性。用混捏法改性载体制备催化剂的炔烃转化率为73%,丁二烯选择性为85%,丁二烯损失为2.5%,选择性高于未改性催化剂。  相似文献   

19.
为获得低温活性高和高温稳定性好的甲烷燃烧催化剂,研究了MxOy(M=Y、Cr、Mg、Ca、Ce)对CuO/ZrO2-Al2O3催化剂的改性作用,结果表明Y2O3改性的催化剂活性和热稳定性最好。该催化剂经1 000℃老化实验后,仍具有31.3SBET/(m2.g-1)比表面积和ΔT50%=3℃,具有较高的催化活性和较好的高温热稳定性,是一种优异的甲烷燃烧催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号