首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
大型LNG储罐的压力测试都采用水压进行,试压结束后必须对储罐进行干燥置换。工程中大多采用氮气持续吹扫进行干燥置换,导致氮气消耗大、工期长、作业成本高,另外干燥置换理论计算方法不完善也给LNG储罐干燥置换介质的计算造成障碍,无法准确预估介质使用量。为节省液氮用量以及准确预估干燥置换氮气使用量,文章采用热干空气吹扫干燥与氮气干燥置换相结合的方法,用压涨式吹扫干燥工艺对储罐实施干燥置换作业,同时根据氧含量及露点要求给出干燥置换介质用量的计算方法,与站场储罐干燥置换施工情况进行对比分析表明:按照露点要求得到的干燥置换计算方法能很好地计算液氮用量及作业工期,可为储罐干燥置换的理论计算及施工作业提供参考。  相似文献   

2.
大型LNG储罐的吹扫干燥技术   总被引:1,自引:0,他引:1  
储罐的干燥和氮气置换方式主要有两种形式,一种是采用持续吹扫的方式进行,一种是采用压涨的方式进行。大连LNG接收站LNG储罐的干燥和氮气置换采用的介质同为氮气,所以储罐的干燥和置换同时进行,其干燥置换步骤主要分为储罐升压、A区干燥置换、B区干燥置换、C区干燥置换和D区干燥置换。采用压涨式干燥吹扫储罐时,需要注意增压和泄压的速度,一般要求增压速度小于1 kPa/h,泄压速度控制在0.8 kPa/h。大型LNG储罐由于在干燥和置换作业前需要进行水压试验,如储罐内的湿度较大,可先利用热的干空气进行吹扫干燥,当露点达到一定值后,改为氮气干燥和置换。  相似文献   

3.
LNG接收站的大型储罐在投用前需要逐步冷却至-162℃,冷却前储罐内充满氮气,冷却过程中将产生大量高含氮气的蒸发气体(BOG),LNG接收站工艺系统无法对其回收利用,只能直接排放至火炬;同时LNG储罐冷却中后期产生BOG的流量极大,超出了接收站BOG的回收处理能力,大量BOG被排放至火炬,造成大量浪费。为此,珠海LNG接收站通过调研国内已投用LNG储罐的冷却方式,并对其预冷过程进行研究,创新性地提出了储罐冷却前下排式氮气置换法和"BOG+LNG"储罐冷却工艺,降低了LNG储罐冷却过程中BOG的氮气含量,提高了LNG接收站冷能利用效率,同时也降低了BOG的产生量,使之能更好地匹配于LNG接收站BOG的回收处理能力。现场实验结果表明:(1)下排式氮气置换法能够在LNG储罐冷却前将罐内氮气置换至合格要求;(2)"BOG+LNG"储罐冷却工艺能够有效降低LNG储罐冷却过程中BOG的产生量,使之不超过LNG接收站的回收处理能力,实现了LNG储罐冷却过程中BOG的零排放。该方法可作为LNG储罐投产试车的借鉴和参考。  相似文献   

4.
介绍了油气处理加工装置预开车的组织机构;详细叙述了预开车的程序:联合检查、水压试验、吹扫、气密检查、单机试运,以及仪表和电气设备调校、物料填充、干燥、氮气置换、天然气吹扫置换。  相似文献   

5.
大型LNG储罐通常采用吊顶结构,为了平衡吊顶上下气相空间的压力,需在吊顶上设置通气孔。从理论上阐明了影响LNG储罐通气孔尺寸选取的开车阶段氮气干燥和置换、翻滚等超压工况和欠压工况,提供了利用HYSYS中的PIPE模型来计算流体流经通气孔时的阻力损失的方法,以及LNG接收站和液化厂LNG储罐吊顶通气孔的尺寸选取方法。  相似文献   

6.
浅析全容式LNG储罐干燥置换技术   总被引:2,自引:0,他引:2  
全容式液化天然气(LNG)储罐一般由预应力混凝土外罐和低温钢制内罐组成,操作温度约为-162℃,内罐用于储存LNG,预应力混凝土外罐能够阻止LNG蒸发气扩散,并能够在内罐出现泄漏时包容泄漏出的LNG。为了防止在储罐充装LNG时液位计或罐内泵等部件发生冻结现象,需要将LNG储罐内部空间干燥到特定露点值。另外,正式投用之前的LNG储罐内部空间的氧含量必须置换到特定水平,以防止在充装LNG过程中形成可燃性环境。需要进行干燥置换的内部空间包括内罐空间、罐顶空间和环形空间(包括罐底保冷层),通过向罐内通入干燥惰性气体,采用爆破置换法或活塞效应置换法,使内部空间水份含量和氧含量都达到LNG安全储存的要求。  相似文献   

7.
连续重整催化剂再生工艺冷却过程的技术分析   总被引:1,自引:0,他引:1  
通过对连续重整催化剂再生工艺过程的探讨,分析了催化剂高温干燥后直接用氮气吹扫、置换对催化剂活性的负面影响;介绍了洛阳分公司对高温干燥后催化剂采用"先在高含氧气氛下冷却降温再用氮气吹扫"的方法的效果.生产实践证明,采用改进后的冷却降温方法,可消除高温下氮气的负面影响,使催化剂的铂分散度得到提高,催化剂碳质量分数由原来的2%~3%降至1%~2%,并有助于提高装置的加工能力.  相似文献   

8.
福建LNG接收站储罐为全容式低温常压混凝土顶贮罐,须依照相关程序对储罐进行静力学水压试验以监测储罐的承重能力,并同时对储罐进行气压测试。针对静力学及气压测试试验中出现的进料管受压、罐壁和罐底留有较多杂质、设备生锈点多的一些问题,进行探讨分析,提出了内罐内管线底部应与内罐相通以防管线受压,增加罐内壁清洗后残留氯分析检测点以重点检测罐壁、罐底残留物,以及用干燥空气对罐内进行吹扫以降低内罐焊缝生锈可能性等一系列措施。  相似文献   

9.
针对目前LNG加气站多采用差压式液位仪无法准确测量液位的情况,为探讨解决此问题的方案,介绍了四种适应LNG低温介质的液位计及其测量原理及组成,比较了优缺点,经过选择,最后提出采用在LNG储罐安装伺服液位计的工艺方案。该方案若实施,可实现LNG储罐的精确计算、安全操作。  相似文献   

10.
近年来,在国家天然气"产供储销"体系建设带动下,国内LNG低温储存技术得到全面发展。双金属全容储罐由于其标准符合度高、成本相对低、建造周期短等优点,在中小型接收站、调峰储配站以及液化工厂中成为建设方的首选罐型。介绍了双金属全容储罐的主体材料选择、地震设计、热角保护设计、绝热设计、主容器锚带结构设计、氮气吹扫系统设计、建造技术等关键技术,为双金属全容储罐的应用推广提供了技术支持。  相似文献   

11.
9%Ni钢板作为内罐材料被广泛应用于大型液化天然气(LNG)储罐建设中,目前国内LNG项目中9%Ni钢基本依赖进口。国内在进行LNG储罐设计时,许用应力取值差异较大,直接影响内罐壁厚的最终计算取值。以国内两个已投产LNG项目设计时9%Ni钢设计许用应力取值为基础,对材料许用应力取值上的差异进行了比较和分析。  相似文献   

12.
LNG大型储罐加强圈设计   总被引:2,自引:2,他引:0  
LNG大型储罐是液化天然气储运过程中的重要设备,加强圈是大型储罐的重要组成部分,它们能提高和保证大型储罐的安全性与抗失稳能力。而与LNG大型储罐加强圈相关的设计在国内的工程实例较少。本文借鉴常用的国际标准,讨论LNG大型储罐不同部位加强圈的设计方法,为以后在大型储罐加强圈设计方面提供参考依据。运用所讨论的设计方法并结合国内某LNG接收终端项目的基础数据,对LNG储罐加强圈进行设计计算,得出的结果与参考项目吻合较好。  相似文献   

13.
大型LNG储罐内压力及蒸发率的影响因素分析   总被引:2,自引:2,他引:0  
LNG在储罐内的蒸发对LNG储罐的安全有着非常大的影响。为此,以3×104m3的LNG储罐为例,在分析研究的基础上,基于质量守恒及能量守恒原理,建立了预测LNG储罐内压力及蒸发率的模拟模型,经试验验证该模型的计算结果较为准确可靠。利用该模型分析了密闭LNG储罐内压力及蒸发率的影响因素。结果发现:密闭LNG储罐存在1个"最优直径"和"最优充满率";LNG储罐保温层导热系数越大,LNG储罐内压力上升得越快,LNG安全储存时间就越短;环境温度越高,密闭LNG储罐的压力上升得越快,LNG安全储存时间越短;LNG含氮量、外界大气压对LNG储罐内的压力影响不大;LNG含氮量越高其的蒸发率越低,向LNG储罐内充注氮气可以有效地降低LNG储罐内液体的蒸发率。该项成果将为LNG储罐的设计及运行提供技术支持。  相似文献   

14.
大型储罐内LNG翻滚机理和预防措施   总被引:4,自引:2,他引:2  
对于连续生产运营的LNG接收站,LNG储罐一般不会完全倒空储存LNG。由于不同产地、不同批次的LNG密度不同,在充装密度、温度都不同的新LNG一段时间后,LNG在储罐内将产生分层,时间较长时容易产生翻滚,从而对LNG储罐的安全造成极大的威胁,也会增加处理翻滚产生的蒸发气的费用。分析了储罐内LNG液体翻滚的机理及其危害,研究了消除LNG分层、预防翻滚的对策。结论指出:利用储罐设计时提供的顶部卸料管和底部卸料管,在储罐投入运营后,当接卸的LNG密度与储罐内的LNG密度不同时,采用合理的卸料方式,不同密度的LNG将自动混合,不会产生明显的分层,进而极大地降低了翻滚发生的概率。  相似文献   

15.
随着LNG(液化天然气)项目的大规模建设,LNG储罐逐渐朝着大型化的方向发展。作为LNG液化厂和接收站的关键和核心设备,介绍了大型LNG储罐在设计和建造方面的特殊要求。论述了国际上常用的大型LNG储罐的结构形式和特点;大型LNG储罐各种结构形式在投资、建设周期、安全性等方面的优缺点;大型LNG储罐材料选择与制造要求;储罐的安全性设计要求。在此基础上,提出了大型LNG储罐在设计和建造过程中应重点注意的关键问题,对大型LNG储罐的国产化潜力进行了分析,并提出了今后的公关方向。  相似文献   

16.
中型单容LNG储罐在珠海天然气液化装置的应用   总被引:1,自引:1,他引:0  
单容LNG储罐在中小型天然气液化装置中应用广泛,且造价低廉,但其安全性较低。静态日蒸发率的高低及压力控制系统是否能够控制储罐压力在正常范围内是衡量单容罐性能优良与否的重要表征。珠海天然气液化装置拥有两座相同的中型单容LNG储罐,从该装置的实际运行情况出发,测算了储罐的静态日蒸发率随充满率的变化情况,并分析说明造成储罐压力快速变化的原因以及压力控制系统的控制效果。  相似文献   

17.
吴创明 《天然气工业》2006,26(8):126-129
LNG供气站的安全、规范操作是稳定、可靠供气的前提和保障。供气站正式投运前须用液氮对工艺系统进行干燥、预冷、置换。控制预冷速度、进液速度、储罐压力、预冷时间,可防止产生较大的冷收缩和温差应力而损坏设备与工艺管道。利用自力式增压调节阀为储罐自动增压可保证LNG储罐的平稳操作和安全供气。储罐正常工作压力由增压阀的开启压力与关闭压力所控制,储罐的允许最高工作压力由自力式减压阀的开启压力所控制,为保证增压阀和减压阀工作时互不干扰,增压阀的关闭压力与减压阀的开启压力区间应大于等于0.05 MPa。储罐上安装自力式减压阀、压力报警手动放空、安全阀起跳三级安全保护装置是防止储罐超压运行的有效措施。测满口和差压式液位计对保证储罐的安全充装至关重要。液位计接头须采用同种材料以防止冷收缩量不同导致螺纹连接副松动引起LNG泄漏。密度不同会导致静置的LNG产生翻滚引发超压事故,定期倒罐可防止LNG翻滚事故。  相似文献   

18.
科学合理地确定LNG储罐罐容及数量配置是LNG接收站前期研究阶段最重要的任务之一,目前国外概念设计与前端工程设计一般用静态经验公式估算法来确定新建LNG接收站项目的LNG储罐罐容,再采用外部第三方或其内部开发的动态数学模型进行核算,基本未考虑用气市场的波动性和调峰需求,估算结果明显低于LNG接收站达到设计负荷工况下的实际需求。为此,引入成熟的物流概念和技术,把握LNG产业链的物流本质,针对LNG接收站储罐的库存物流和LNG运输船到港、卸货的排队物流特性,建立了用于计算LNG接收站储罐罐容及其数量配置的动态数学模型。通过广东某LNG接收站项目实例计算比较可知,该模型具有以下优点:既可确定经济合理的LNG运输船船容及配置、LNG接收站罐容及配置,又可计算出非均匀船期条件下的LNG储罐罐容及所需配置数量,还可动态地掌握LNG储罐库存曲线的变化情况,为现货采办等经营手段提供可靠的决策依据。  相似文献   

19.
全容式LNG储罐绝热性能及保冷系统研究   总被引:1,自引:0,他引:1  
彭明  丁乙 《天然气工业》2012,32(3):94-97
我国大型LNG接收站中的储罐均为全容式LNG储罐,其通常处于低温微正压状态,外界热量的漏入会引起LNG的蒸发,增加能耗,也可能会使储罐产生分层及翻滚现象,对其安全造成较大威胁,因此,需要对它的绝热性能及保冷系统进行研究。为此,根据全容式LNG储罐的结构特点,分别对罐顶、罐壁和罐底进行了漏热量计算,结合实例进行了LNG储罐总漏热量及日蒸发率的计算分析,探讨了LNG储罐的绝热性能,找到了影响储罐漏热量的主要因素:保冷材料的导热系数、保冷层的厚度、储罐表面的吸收率、环境温度等,为LNG储罐保冷系统的设计提供了相关依据;并根据LNG储罐保冷系统的需要,归纳总结了保冷材料的选择原则、施工方法及其注意事项。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号