首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于谱投影梯度追踪的压缩感知重建算法   总被引:1,自引:0,他引:1  
为了改进方向追踪法的重建精度和算法效率, 提出了一种基于谱投影梯度(Spectral projected gradient, SPG)追踪的压缩感知(Compressed sensing, CS) 重建算法. 该算法采用方向追踪法框架, 运用谱投影梯度方法计算更新方向和步长, 引进非单调线性搜索策略使算法避免收敛至局部最优解. 实验结果证明了该算法的有效性, 通过设定合适的阈值参数可以取得重建精度和算法效率之间的平衡.  相似文献   

2.
为提高压缩感知(Compressed sensing,CS)大规模稀疏信号重构精度,提出了一种联合弹性碰撞优化与改进梯度追踪的WSNs(Wireless sensor networks)压缩感知重构算法.首先,创新地提出一种全新的智能优化算法|弹性碰撞优化算法(Elastic collision optimization algorithm,ECO),ECO模拟物理碰撞信息交互过程,利用自身历史最优解和种群最优解指导进化方向,并且个体以N(0,1)概率形式散落于种群最优解周围,在有效提升收敛速度的同时扩展了个体搜索空间,理论定性分析表明ECO依概率1收敛于全局最优解,而种群多样性指标分析证明了算法全局寻优能力.其次,针对贪婪重构算法高维稀疏信号重构效率低、稀疏度事先设定的缺陷,在设计重构有效性指数的基础上将ECO应用于压缩感知重构算法中,并引入拟牛顿梯度追踪策略,从而实现对大规模稀疏度未知数据的准确重构.最后,利用多维测试函数和WSNs数据采集环境进行仿真,仿真结果表明,ECO在收敛精度和成功率上具有一定优势,而且相比于其他重构算法,高维稀疏信号重构结果明显改善.  相似文献   

3.
针对现有压缩感知超宽带信道估计方法运算复杂度较高的问题,提出了基于梯度追踪算法的压缩感知超宽带信道估计方法.将超宽带信道估计转化为压缩感知的重构问题,并使用梯度追踪算法进行重构得到信道估计值,最终实现信息解调.梯度追踪算法通过每步计算目标函数的负梯度方向和搜索步长,使目标函数沿负梯度方向以此步长搜索得到每步重构值的最优解,从而避免了正交匹配追踪算法中高维度最小二乘运算以及基追踪算法中求解凸优化问题所导致的运算复杂度高的缺点.仿真结果表明该方法相对于正交匹配追踪算法和基追踪算法能够降低运算复杂度,提高运算速度,同时依然能够保证估计效果.  相似文献   

4.
研究局部场电位信号(Local Field Potential,LFP)的重构问题.依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力.为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法.利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型.仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度.  相似文献   

5.
在图像压缩感知中,梯度投影恢复算法存在收敛速度慢、迭代次数多、对数据稀疏度过分敏感的问题。为此,提出一种基于压缩感知的图像重构算法。将拟牛顿法引入稀疏梯度投影算法中,利用拟牛顿法的估计校正机制以及其全局超线性收敛性,通过对目标函数的校正,获得更精确的搜索方向,从而减少迭代次数,构成有效收敛的图像恢复算法。实验结果表明,与传统梯度投影恢复算法相比,该算法在保证较好图像恢复效果的同时具有较好的抗噪性能,并且在减少迭代次数的基础上能有效降低重构误差,得到稳定收敛的重构结果。  相似文献   

6.
针对压缩感知中未知稀疏度信号的重建问题,提出一种新的压缩感知的信号重建算法,即自适应正则化子空间追踪(Adaptive Regularized Subspace Pursuit,ARSP)算法,该算法将自适应思想、正则化思想与子空间追踪(Subspace Pursuit,SP)算法相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,利用正则化过程实现支撑集的二次筛选,最终能实现信号的精确重构。仿真结果表明,该算法能够精确重构原始信号,重建效果优于SP算法、正则化正交匹配追踪(ROMP)算法、稀疏度自适应匹配追踪(SAMP)算法、压缩采样匹配追踪(CoSaMP)算法等。  相似文献   

7.
无线传感网络存在网络带宽限制和传感器节点的能耗问题,实际应用中通常希望可以通过重构算法从采集的少量数据中还原出原始信息,压缩感知理论为上述问题提供了一个解决思路。利用压缩感知理论,对无线传感器网络中温度传感器的监测信号进行了压缩感知的应用研究。针对传统压缩采样匹配追踪(CoSaMP)算法中测量次数多、重构精度低等问题,利用信号的小波系数所形成的连通树的结构特性,提出了基于小波树模型的压缩采样匹配追踪算法。将该算法应用到无线传感器网络监测信号的压缩感知仿真实验中,与传统压缩采样匹配追踪算法的重构性能进行比较,结果表明该算法较传统压缩采样匹配追踪算法在一定范围内对无线传感器网络中的温度信号具有更好的压缩感知性能。  相似文献   

8.
压缩感知包括压缩采样与稀疏重构,是一种计算欠定线性方程组稀疏解的方法.大规模快速重构方法是压缩感知的研究热点.提出一种匹配追踪算法CSMP,采用迭代式框架和最佳s项逼近以逐步更新信号的支集与幅度.基于约束等距性质进行收敛分析,算法收敛的充分条件为3s阶约束等距常数小于0.23,松弛了匹配追踪重构s稀疏信号的约束等距条件,加快了收敛速度.为适用于大规模稀疏信号重构,提供了可进行随机投影测量子集与稀疏基子集选择的矩阵向量乘算子,可利用离散余弦变换与小波变换,避免了大规模矩阵的显式存储.在220随机支集的稀疏高斯信号,512×512Lenna图像上进行压缩采样与稀疏重构实验并与其他算法进行比较,结果表明所提算法快速稳健,适用于大规模稀疏信号重构.  相似文献   

9.
现有的压缩感知MIMO-OFDM信道估计方法多采用正交匹配追踪算法及其改进的算法。针对该类算法重构大规模的数据存在计算复杂度高、存储量大等问题,提出了基于梯度追踪算法的MIMO-OFDM 稀疏信道估计方法。梯度追踪算法采用最速下降法对目标函数解最优解,即每步迭代时计算目标函数的搜索方向和搜索步长,并以此选择原子得到每次迭代重构值的最优解。本文使用梯度追踪算法对信道进行估计,并与传统的最小二乘估计算法、正交匹配追踪算法的性能和计算复杂度进行比较。仿真结果表明,梯度追踪算法能够保证较好的估计效果,减少了导频开销,降低了运算复杂度,提高了重构效率。  相似文献   

10.
在压缩感知理论中,设计好的稀疏重构算法是一个比较重要,同时也是一个具有挑战性的问题.稀疏重构的基本目标是用较少的数据样本,通过解一个优化问题完成信号或者图像重构.关于稀疏重构过程,一个重要的研究方向是在数据受噪声干扰的情况下,如何高效快速地重建原信号.本文提出了基于共轭梯度最小二乘法(Conjugate gradient least squares,CGLS)和最小二乘QR分解(Least squares QR,LSQR)的联合优化的匹配追踪算法.该算法采用Alpha散度来测量CGLS和LSQR之间的离散度(差异度),并通过离散度来选择最优的解序列.实验分析表明基于CGLS和LSQR的联合优化的匹配追踪算法在压缩采样的信号受噪声干扰情况下具有较好的恢复能力.  相似文献   

11.
压缩感知是一种新型的信号采样及重构理论,高效的信号重构算法是压缩感知由理论转向实际应用的枢纽。为了更精确地重构出原始稀疏信号,本文提出一种基于二次筛选的回溯广义正交匹配追踪算法。首先采用内积匹配准则选出较大数目的相关原子,提高原子的利用率。其次利用广义Jaccard系数准则对已选出的原子进行二次筛选,得到最匹配的原子,优化原子选取方式。实验结果表明,在不同稀疏度和观测值下进行信号重构,相比于回溯广义正交匹配追踪算法、正交匹配追踪算法及子空间追踪算法,本文算法在重构误差及重构成功率方面有较大的优越性。  相似文献   

12.
Compressive sensing can reconstruct compressible or sparse signal at the under-sampling rate. However small coefficients of the compressible signal with large number but low energy are hard to be reconstructed, while also infect the accuracy of the big coefficients. In this reason, for the compressive sensing algorithms such as orthogonal match pursuit (OMP) and tree-structed wavelet compressive sensing (TSW-CS), an assumed error is in the measurement model, which makes the reconstructed results not satisfy the original measurement model. Aiming at this problem, we propose the projection replacement (PR) algorithm by building the measurement space and its orthogonal complement space with singular value decomposition, and replacing the projection in measurement space of the reconstructed result with the pseudo-inverse one. The proposed PR algorithm eliminates the hypothetic measurement error in OMP and TSW-CS reconstructed model, and it guarantees theoretically that the PR results have a smaller error. Its effectiveness is verified experimentally with OMP and TSW-CS. The proposed algorithm serves as a good reconstruction algorithm for the CS-based applications such as image coding, super-resolution, video retrieval etc.  相似文献   

13.
针对传统压缩感知重构算法在起搏心电信号远程监测过程中易受噪声干扰的问题,提出在利用正交匹配追踪进行残差更新的迭代过程中引入岭回归正则化参数K,降低噪声对重构结果的影响。利用岭迹法证明了最佳K值与信噪比呈负相关,为选取K值以获得更接近真实解的重构信号提供了理论依据。对基于岭回归的重构算法与分块稀疏贝叶斯学习算法、正交匹配追踪算法进行了对比分析,实验结果表明,在低信噪比环境下,引入了岭回归思想的算法在保留高重构效率的同时提高了重构精度。  相似文献   

14.
目的 压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的分段迭代匹配追踪(StIMP)算法。方法 为保证迭代时挑选原子的精确性和快速性,对观测矩阵广义逆化,降低原子库中原子的相干性;原子更新结合正交匹配追踪(OMP)算法筛选原子的准确性与CoSaMP算法的回溯性,将迭代过程分为两个阶段:第1阶段利用OMP算法迭代K/2次;第2阶段以第1阶段OMP算法迭代所得的残差和原子为输入,并采用CoSaMP算法继续迭代,同时改变原子选择标准,从而精确快速地重构出稀疏信号。结果 对于1维的高斯随机信号,无论在不同的稀疏度还是观测值下,相比于OMP、CoSaMP、正则化正交匹配追踪(ROMP)算法和傅里叶类圆环压缩采样匹配追踪(FR-CoSaMP)算法,StIMP算法更加稳健,且具有更高重构成功率;对于2维图像信号,在各个采样率下,StIMP算法的峰值信噪比(PSNR)均高于其他重构算法,在采样率为0.7时,StIMP算法的平均PSNR值比OMP、CoSaMP、ROMP和FR-CoSaMP算法分别高2.14 dB、1.20 dB、3.67 dB和0.90 dB,平均重构时间也较OMP、CoSaMP和FR-CoSaMP算法短。结论 提出了一种改进的重构算法,对1维高斯随机信号和2维图像信号均有更好的重构效率和重构效果,与原算法和现有的主流图像重构方法相比,StIMP算法更具高效性和实用性。  相似文献   

15.
基于压缩感知信号重建的自适应正交多匹配追踪算法*   总被引:3,自引:2,他引:1  
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法  相似文献   

16.
压缩感知历经多年发展,重构算法也比较多,其中分段弱正交匹配追踪(SWOMP)算法是一种改进算法,该算法对稀疏度没有要求,测量矩阵选择高斯矩阵,但是其重构效果并不理想。针对该算法的不足,同时结合电子探针影像,对该算法进行优化。该优化充分利用傅里叶矩阵的优势,同时对迭代次数和门限参数进行调整。首先,对常用的矩阵进行多次试验,找出最优质的测量矩阵——傅里叶正交矩阵;其次,对迭代次数和阈值进行修改,寻找最佳参数搭配,提高该算法重构质量。实验结果表明,本文方法在电子探针图像上的重构效果较好,达到超分辨率恢复要求,所重构的图像质量高于原有算法。  相似文献   

17.
压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。  相似文献   

18.
在信号稀疏度未知的情况下,稀疏度自适应匹配追踪算法(Sparsity Adaptive Matching Pursuit,SAMP)是一种广泛应用的压缩感知重构算法。为了优化SAMP算法的性能,提出了一种改进的稀疏度自适应匹配追踪(Improved Sparsity Adaptive Matching Pursuit,ISAMP)算法。该算法引入广义Dice系数匹配准则,能更准确地从测量矩阵中挑选与残差信号最匹配的原子,利用阈值方法选取预选集,并在迭代过程中采用指数变步长。实验结果表明,在相同的条件下,改进后的算法提高了重构质量和运算速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号